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Abstract—In this paper, we first present a classification 

for existing GPS positioning algorithms based on their 

features of mathematical operations in the calculating 

process and the accuracy of the solutions solved. Then 

we systematically evaluate and compare the 

performance of GPS algorithms for practical 

environments. Performance metrics include normalized 

execution time and the absolute error. We examine the 

performance of traditional Newton-Raphson algorithm as 

well as those newly proposed ones. We find that while 

the traditional Newton-Raphson algorithm does deliver a 

reasonable performance, others may over-perform it by 

a good margin. 

I. INTRODUCTION 

Global Positioning System (GPS) is now widely utilized 

for positioning and navigational purposes. Highly accurate 

and super efficient GPS algorithms are critical to providing 

all-weather and all-time positioning services. The basic idea 

of GPS positioning techniques is the so-called Trilateration 

Model, which translates the positioning problem into a 

multivariate quadratic system [27].  

Though Trilateration appears to be a simple 

mathematical problem, obtaining an accurate location is not 

a straightforward task, especially considering the existence 

of errors in the system. Basically, there are two main factors 

affecting the accuracy of positioning: distance 

measurements and satellite geometry [30]. Distance 

measurements will contain errors when satellites’ signals 

transmit in the atmosphere. This brings errors into the 

quadratic system to be solved. On the other hand, the 

satellite geometry will magnify the above errors when 

solving that system [30]. In fact, large measurement errors 

and a bad geometry will bring significant errors into 

calculated locations. In order to obtain stable and accurate 

solutions, GPS algorithms need to carefully consider these 

factors. 

 Various algorithms have been proposed to solve the 

GPS problem. However, most of these algorithms focus on 

cases when there are no measurement errors. The 

effectiveness and efficiency of these algorithms have not 

been investigated systematically when measurement errors 

and redundant measurement are considered. For many 

researchers, an obvious question is, while theoretically these 

algorithms can find same or similar solutions, why is the 

Newton-Raphson algorithm is adopted as a de facto 

standard approach for GPS positioning in practice only?     

In this paper, we intend to address this question. We first 

classify GPS systems into two kinds. The first kind is simple 

systems, which make simplicity assumptions and do not take 

into account measurement errors. A study of simple systems 

helps to reveal the mathematical nature of different 

algorithms. The second kind is complex systems, which are 

designed to deal with practical issues such as measurement 

errors and redundant measurements.  

We start our evaluation by classifying the GPS 

algorithms based on their mathematical operations in the 

solution process. Based on the identified simple systems, a 

classification of GPS algorithms is presented. Basically, 

GPS algorithms can be classified as direct or iterative ones, 

depending on whether the solution is obtained directly or 

iteratively. Furthermore, GPS algorithms can be divided as 

exact and approximate ones, depending on whether an 

approximation is made in the solution process.  

Representative algorithms from these classes are selected 

for performance analysis and comparison for complex 

systems that involve measurement errors and redundant 

measurements. We evaluate these algorithms in terms of 
performance metrics including normalized execution time and the 

absolute error. By comparing execution times, we 

quantitatively demonstrate the tradeoff between accuracy 

and execution time. The performance observations have not 

been previously reported and can be used as a guidance for 

further improvements on and selection of GPS algorithms.     

The paper is organized as follows: Section 2 discusses 

the related work; Section 3 presents the model of 

trilateration and introduces a classification of GPS 

algorithms; In Section 4, we discuss strategies for complex 

systems and compare their performance. Section 5 

concludes the paper with a discussion on future work. 

II. PREVIOUS WORK  

Various algorithms have been proposed based on a 

different understanding of Trilateration. Most of this work 

focuses on how to deal with a system of equations with or 

without measurement errors.  

A comprehensive analysis of GPS algorithms has not 

been reported. No systematic classification of GPS 

algorithms has been proposed before. The work in [13] 

summaries previous direct algorithms such as [2] [3] [4] [6] 

[7]. However, it only covers the cases in which there are no 

measurement errors. Though algorithms supporting 

redundant measurements are mentioned, systematic analysis 

and comparison were not presented. Some literatures have 

presented the comparison on accuracy and execution time 
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for certain algorithms [16] [19] [23] [29]. However, these 

papers compare individual algorithms but not different 

classes of algorithms.  

Our work reported in this paper is the first on 

classification of GPS algorithms and comparison of their 

performance in terms of accuracy and execution time 

measurements, especially in real environments that involves 

measurement errors and redundant measuring.  

III. MODELS APPROACHES FOR SIMPLE SYSTEMS 

A. The Model and Simple Systems 

The challenge of a GPS system is to determine the 

position of a device (usually called a receiver) by measuring 

the distance between the receiver and a set of m satellites 

based on the trilateration method [22]. Let the location of 

satellite be  
iii

zyx ,, , and the receiver’s location 

be  eee zyx ,, . The center of the earth is denoted as  0,0,0 , 

the origin point of the coordinate system. Note that the clock 

at the receiver may not be precisely synchronized with those 

in satellites. Then, a GPS system typically takes the 

following steps to determine  eee zyx ,, : first, the receiver 

receives a signal from satellite 
i

S  and uses it to compute 

the measured distance, 
i

̂ , between itself and
i

S ; then, the 

following equations can be established: 

      R

i

e

i

e

i

e

i
zzyyxx   ˆ

222

  (3-1) 

where i = 1, 2, …, m and R  is the distance error brought by 

imprecise clock at the receivers. The receiver’s location 

 eee zyx ,,  is determined by solving the system in (3-1). 

In reality, many additional errors have to be considered 

in addition to imprecise clock at the receiver. To better 

appreciate the GPS algorithmic ideas, we will start by 

considering solution approaches that only deal with the 

clock error. We refer to these kinds of systems as simple 

systems. We will then discuss complex systems in Section 5.   

B. Approaches for Simple Systems 

We now consider the approaches that can be used to 

solve the system in (3-1). Note that (3-1) has four unknowns, 

namely  eee zyx ,, and
R and, hence, four equations are 

sufficient to solve (3-1). Thus, in this section, we will 

assume that four satellites are available, i.e., m = 4, unless 

otherwise specified. 

Based on utilized solution strategies, GPS algorithms can 

be partitioned into two classes: iterative and direct 

algorithms. The main idea of an iterative algorithm is as 

follows: starting from an initial guess, the algorithm 

attempts to solve a simple system by finding successive 

approximations to the solution. On the contrary, direct 

algorithms attempt to solve the problem with a number of 

transformations. Each transformation converts the system of 

equations into another form (equivalent or approximated). 

For both classes of algorithms, sometimes it’s necessary to 

make approximations. Therefore, the solution obtained will 

be approximate; otherwise, the solution will be exact. We 

call them approximate or exact, respectively. Therefore, we 

present a classification in Table 3.1.  

 

Table 3.1 A Classification of GPS Algorithms 

 Exact Approximate 

Iterative [13][25][33], [21][31], [35] N/A
1
 

Direct 
[3] [6] [32], [5], [7], [18], [20], 

[23],  [24], [26], [29] 
[14][16][9], [28] 

1) Exact Iterative Algorithms 

This class of algorithms will iteratively calculate until the 

solution is sufficiently close to the true position. A typical 

algorithm is Newton-Raphson (or NR in short) algorithm 

[21] [31]. We use this algorithm to illustrate the basic ideas 

behind these algorithms. For (3-1), let 

      Re

i

e

i

e

ii
zzyyxxr 

222

  
(3-2) 

and 

  0ˆ 
iii

rXf 


    (3-3) 

where i = 1, 2, 3 and 4. X


is vector  TReee zyx   

which represents the solutions to be calculated.  

Let 
j

X


 be the j
th

 row of X


. As the algorithm is iterative, 

we let 
kX


be the solution after k

th
 iteration and 

k

j
X


 be the 

j
th

 row of kX


, where k = 0, 1, 2, …, and j = 1, 2, 3 and 4. 

Comparing (3-1), (3-2), and (3-3), we see that (3-3) is 

equivalent to (3-1). Using the Taylor series [21], we can 

obtain an approximate system for (3-3):  

      


 





4

1

11

j

kkk

j

ik

i

k

i
XXX

X

f
XfXf






  

(3-4) 

where  
 

4

1j

k

j

i X
X

f 
 is the partial derivative on

j
X


at the 

solution kX


. Since  

   01 k

i
Xf


     (3-5) 

we have 

     0
4

1

1 



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



j

kkk

j
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i
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X

f
Xf






 

 (3-6) 

Knowing the value of
kX


, by (3-6), we can obtain a 

linear system with unknown
1kX


. That is, all other 

parameters are known in (3-6) except
1kX


. Because there 

are four equations, we can then derive a unique solution 

for
1kX


. That is, we have 

 
 










4

1

1

j

k

j

i

k

ikk

X
X

f

Xf
XX 






   (3-7) 

                                                           
1
 By definition, this class of algorithms will make certain 

approximations in the iterative process. To the best of our 

knowledge, no work of this kind has been reported.  
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Following the fix point theory [17], we know that the 

iterative process in (3-7) will converge at the exact solution 

of (3-3). Other algorithms such as [13] [25] [33] and [35] 

employ strategies similar to the NR algorithm with certain 

variations.  

2) Exact Direct Algorithms 

This class of algorithms uses a number of 

transformations to convert the original system into an 

equivalent but calculate-able form. The solutions are, hence, 

usually in a closed-form. Here, we introduce the main idea 

behind these algorithms.  

Algorithms described [3] [6] [32], [18], [24] and [26] 

transform the non-linear system in (3-1) to an equivalent 

polynomial equation with only one unknown. For example, 

in [3] [6] [32], so-called Groebner Basis techniques are used 

to achieve this purpose. First, (3-1) is converted into (3-8): 

       2222
ˆ R

i

e

i

e

i

e

i
zzyyxx     (3-8) 

Subtracting the first equation from the rest, we will have 

a linear system and then get a quadratic equation in terms 

of
R : 

  0
01

2

2
 aaa RR     (3-9) 

where
0

a ,
1

a and
2

a  are known constants. (3-9) may result in 

two possible solutions for
R . Substituting each of these 

solutions into the expressions of
ex , ey and ez , two solutions 

can be derived. Choosing a solution that meets practical 

constraints, we can say that (3-1) is solved.  
Other algorithms are similar. The difference is that they use 

different techniques to derive expressions for
ex , ey and ez in 

terms of
R . Then, the solution is derived via a polynomial 

equation similar to (3-9).  

3) Approximate Direct Algorithms 

This class of algorithms also utilizes a number of 

transformations. However, some transformations may be 

approximations. Hence, the solution calculated by this class 

of algorithms will be an approximation of the true position. 

Approximations can be either numerical or physical.  

Bancroft algorithm [9] is one that uses numerical 

approximations. The algorithm first transforms the system 

in (3-1) into (3-8) and then transform (3-8) into a following 

approximate quadric equation with one unknown:  

  0,1,2, 2   BBBBBB
 

(3-10) 

where  is unknown; B , and  are known. For a detailed 

discussion on the rationale of the transformation, an 

interested reader is referred to [9]. Therefore, we obtain a 

quadratic equation in terms of  . Taking the approach 

similar to the one discussed in (3-9), we can solve (3-10). 

However, this algorithm uses the location of earth center as 

the approximate position of the receiver when constructing 

parameter B [9]. Thus, we eventually obtain an approximate 

solution of (3-1).  

An algorithm in [28] took a physical approximation 

approach. It first obtains a linear system in terms 

of
ex , ey and ez as shown in (3-8). It then uses a clock-bias 

prediction method [14] [28] to obtain an approximate value 

of
R . Denoting R

i
 ˆ as

i
~ , we get a following system: 

     
i

e

i

e

i

e

i
zzyyxx ~

222

   (3-11) 

 In (3-11), three unknowns are left and ordinary linear 

algebraic techniques can be used to solve it. As this 

algorithm uses physical approximation to obtain a solution, 

we call it Physically Approximate Direct algorithm (PAD 

for short). 

IV. COMPLEX SYSTEMS AND THEIR PERFORMANCE 

A. Approaches of Solving Complex Systems 

In Section 3, we have discussed the different methods 

taken to solve simple systems. However, due to the 

limitation of measurement techniques, measurement errors 

are inevitable in the real world. In the literature, the basic 

idea to deal with this kind of error has been to treat satellite 

dependent errors as errors contained in known parameter
i

  

[22]. Mathematically, we need to solve 

      R

i

e

i

e

i

e

i
zzyyxx  

222

   (4-1) 

where mi ...,,2,1 while considering that
i

  may 

contains an error.  
Although the systems in (4-1) take into account satellite 

dependent errors and the receiver dependent error, (4-1) is 

nevertheless similar with (3-1) except that
i

 contains errors. 

Consequently, a solution obtained from (4-1) will contain an 

error. As we will see, this error may, unfortunately, be 

substantial. The key is how to eliminate or reduce the error in 

the final solution due the error in
i

 . 

A general strategy to eliminate or reduce the error in the 

final solution is to take advantage of the (possibility of) 

hardware redundancy. In other words, we may like to use 

more than four satellites ( 4m ), if they are available, to 

calculate a position. Note that this immediately causes the 

system in (4-1) to become over-determined. A common 

approach here is to use the Least Square Method (LSM) [22] 

to solve the over-determined system with the hope that the 

error in the solution can be reduced or eliminated in the 

process.  

Considering the above issues such as errors contained in 

measurements and utilization of redundant satellites’ signals, 

we call such practical configurations of GPS as complex 

systems. Later we will discuss how to apply different types 

of GPS algorithms to complex systems. 

B. Application of Least Square Methods 

It seems that the only thing we need to do is to 

superimpose LSM to the algorithms discussed in Section 3 

for complex systems. Unfortunately, this is not a trivial task. 

Next, we discuss the feasibility and methodology of 

applying LSM to these algorithms.  

1) Applying LSM to Exact Iterative Algorithms 
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Exact Iterative Algorithms, as discussed in Section 3.1.1, 

can utilize least square method to find an optimal solution. 

As we known, for the NR algorithm, it uses the linear 

system in (3-7) to iteratively find a solution. In fact, (3-7) 

can be written as a matrix form: 

DXA k

k


1     (4-2) 

From [21], we know the errors in D


have a Gaussian 

distribution with zero mean. Therefore, using Ordinary 

Least Squares [22] to (4-2), we can obtain 

  DAAAX
T

kk

T

k

k
 1

1


     (4-3) 

2) Applying LSM to Exact Iterative Algorithms 

From Section 3.1.2, we know that this approach is to find 

an equivalent quadratic univariate equation for (3-1). When 

there are more than four satellites available, this approach 

cannot utilize least squares techniques to find an optimal 

estimation. [13] provides an alternative approach (Groebner 

Basis method) to reduce the system scale (i.e., the number 

of equations) in order to make computable.  Unfortunately, 

as pointed out by [12], such an approach results remarkable 

large time complexity, making such an approach infeasible 

for practical uses when we deal with the systems that have 

satellite dependent errors. Thus, we will not evaluate this 

type of algorithms for complex systems.  

3) Applying LSM to Approximate Direct Algorithms 

As we know, algorithm [9] and [28] can provide 

approximate solutions for (3-1) in a closed-form. Bancroft 

algorithm can use Ordinary Least Squares to obtain an 

optimal estimation of the true position. In fact, for the 

system in (3-10), B has a following relation with a known 

parameter A (its definition can be found in [9]): 

IAB       (4-4) 

where I is the identity matrix. From [9], we know that A is a 

4m matrix and it is assumed as a constant matrix without 

errors. Then, B can be calculated by (4-5): 

  IAAAB TT 1

     (4-5) 

Similarly, PAD algorithm can also utilize LSM to find an 

optimal estimation. Next, we will explain how PAD 

algorithm works. Recalling the system in (3-11) and we 

write (3-11) as a matrix form in (4-6): 

DXA


     (4-6) 

From [28], in (4-6), we know that the errors in D


are 

zero-mean, equal-variance and correlated. Then using 

Generalized Least Squares [22], we will have 

  DMAAMAX TT


111     (4-7) 

where M is the covariance matrix of the errors in D


. 

By the above methods, both algorithms will obtain an 

optimal estimation in the sense of least squares. However, 

this optimal estimation is meaningful to the approximate 

solution but not the true position. That is, the final solution 

is still an approximation of the true position. 

C. Performance Evaluation and Comparison 

As discussed in Section 4.2, only algorithms in Section 

4.2.1 and 4.2.3 are applicable for complex systems. 

Therefore, in this subsection, we will choose NR, Bancroft 

and PAD algorithms for comparisons.  

1) Performance Metrics 

In order to analyze and compare the accuracy of GPS 

algorithms, we would like to introduce metric Absolute 

Error (AE), which is defined as follows: 

     222 rerere zzyyxxAE    (4-8) 

where  rrr zyx ,,  is the exact location of the receiver, and 

 eee zyx ,,  is the calculated solution by an GPS algorithm. 

The Absolute Error indicates the distance between the exact 

location and the location derived by the given GPS 

algorithm. Obviously, the smaller of the AE, the better a 

GPS algorithm is. 

We would like to measure the efficiency of an algorithm 

by its execution time. Let the time for executing algorithm 

O  be
O

  where O  may be NR, Bancroft, or PAD algorithm, 

respectively. We define Normalized Execution Time (NET) 

for algorithm O as follows: 

%100
NR

ONET



   (4-9) 

That is, NET measures the execution time of an 

algorithm in terms of the time taken for executing NR 

algorithm. We do so as the NR algorithm has been literally a 

benchmark in studies of GPS algorithms.  

2) The Experimental System 

We established the following experimental system and 

collected performance data. First, we collect the real 

observation data from CORS by randomly selecting a land 

observation station [15]. The site ID is SRZN and the 

coordinates of this site is (3623420.032,-5214015.434, 

602359.096) in meters. The collecting date is 2009/08/12. 

24-hour observation data are collected. In each second, all 

available satellites’ coordinates and measured distances are 

collected as one data item. Each item contains data from 8 

to 12 satellites. By this means, real satellite geometry can be 

obtained. The computer system has an AMD Triple-Core 

Processor with 3GHz and 1.5MB of Cache, 2GB Physical 

Memory, and 500GB Disk. Matlab software is used to run 

all algorithms. 

Because the true location of the observation station is 

known, we can remove all errors from the measured 

distances. Then we manually add 
s

i
 (it satisfies Gaussian 

distribution and zero mean [20]) and R (In order to 

guarantee that clock bias prediction is acceptably accurate, it 

is set as 1 meter. In fact, the accuracy of clock bias 

prediction in PAD algorithm is less than 1 meter) on the true 

distances. Such a setting can be seen as an ideal condition 

for all algorithms. Based on this configuration, performance 
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data in terms of the averages of Absolute Error and 

Normalized Execution Time are obtained.  

3) Performance of Accuracy 

Figure 4.1 shows the change of the accuracy when the 

satellite dependent error
s

i
  changes. We use seven satellites 

and let
s

i
 change from 0 to 20 meters. We can see that when 

s

i
 changes, the accuracy changes in all algorithms. The 

smaller
s

i
 is, the better the accuracies are. Note that, when 

s

i
 is set to 0, accuracies of the NR and the PAD algorithms 

are close to zero. However, Absolute Error of Bancroft 

algorithm remains to be more than 30 meters. From Fig. 4.1, 

we find that the accuracy of Bancroft algorithm is the worst. 

the NR algorithm has the best accuracy. The accuracy of 

PAD algorithm is close to that of NR algorithm. Such a 

result can be explained as follows: 

1) From Section 3, we know that the NR algorithm can 

iteratively find an exact solution for simple systems and 

an optimal estimation for complex systems.    

2) The PAD algorithm can use LSM for complex systems. 

However, this algorithm uses an approximation to R , 

which will bring extra errors to the calculated solution. 

Therefore, the accuracy of the PAD algorithm is close 

to but does not exactly match that of the NR algorithm. 

Bancroft algorithm can also use LSM for complex 

systems and will bring approximate solutions to the true 

position. Therefore, this algorithm can not achieve the 

similar accuracy of that of the NR algorithm either.  
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Figure 4.1 Change of the accuracy 

 

Note that in later comparison of execution time of 

different algorithms, we can see that tradeoff to obtain better 

accuracies is spending more execution time. 

4) Performance of Execution Time 

In this subsection, we will evaluate and compare the 

execution time of three algorithms. Fig. 4.2 gives the results 

of comparisons. Here we use the same configuration in 

Section 4.3.3. From Fig. 4.2, we see that the NR algorithm 

takes longest time to find a solution. Bancroft algorithm is 

better and the PAD algorithm is the best. Such differences 

can be explained as follows: 

1) The NR algorithm uses an iterative process to find a 

solution. Typically, four or five iterations are needed to 

converge. Though each iteration involves solving a 

linear system, it spends obviously much more time than 

direct algorithms. 

2) Bancroft algorithm uses a direct approach to find a 

solution. As discussed in Section 3, this algorithm 

involves finding the root for a univariate quadric 

equation. In addition, in the real program of Bancroft 

algorithm, two rounds of executions are needed. That is, 

the program will use the solution obtained by the first 

execution for refining. The second execution will find a 

better solution and no more executions are needed for 

further refining. If only one execution is performed, its 

execution time will be less than that of the PAD 

algorithm. However, this will result in a remarkable loss 

of accuracy. PAD algorithm also calculates in a direct 

manner. Just one linear system needs to be solved. This 

algorithm involves performing only several matrix 

inversions and multiplies. Consequently it takes the 

least time to find a solution.   
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Figure 4.2 Normalized Execution Time 

 

Summaries. Based on the comparisons on accuracies and 

execution times, we can identify the strengths and weakness 

for these algorithms: 

1) The NR algorithm, which is a representative algorithm 

of Exact Iterative algorithms, has the best accuracy and 

uses much more execution time. This algorithm is 

applicable to applications requiring high accuracies 

without critical requirements on execution times. 

2) For two representative algorithms of Approximate 

Direct algorithms, PAD algorithm has the feasible 

accuracy of positioning and least execution time and it 

fits for applications requiring high accuracies and real-

time response; Bancroft algorithm has a limitation on 

the accuracy of positioning and takes more execution 

time than that of the PAD algorithm. When clock bias 
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prediction is not available for PAD algorithm, this 

algorithm can be an alternative solution. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we analyzed and evaluated GPS algorithms. 

By a classification of these algorithms, we revealed the 

mathematical nature of the solution strategies. We 

systemically evaluated and compared representative 

algorithms in terms of their performance of accuracy and 

execution time. Through our observations, justification for 

the Newton-Raphson algorithm as a de facto standard for 

GPS positioning can be established. In terms of both 

execution time and accuracy measurements, this algorithm 

does delivery reasonably good performance. However, our 

study also shows the potential of other (newly proposed) 

algorithms. For example, the PAD algorithm over-perform 

the NR algorithm in terms of execution time while has 

similar performance on accuracy. Several observations 

made in this study can be utilized in practice for selecting 

and improving the GPS algorithms for different applications 

situations. 
Our work is preliminary and several extensions are 

possible. For example, we found that no comprehensive 
studies had been made for exact direct class of algorithms. 
These algorithms may have the potential for high accuracy 
and low execution time.   
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