11.5 A 2-Phase Soft-Charging Hybrid Boost Converter with **Doubled-Switching Pulse Width and Shared Bootstrap** Capacitor Achieving 93.5% Efficiency at a Conversion Ratio of 4.5

Mo Huang^{1,2}, Yan Lu¹, Rui P. Martins^{1,3}

¹University of Macau, Macau, China ²South China University of Technology, Guangzhou, China ³University of Lisboa, Lisbon, Portugal

High conversion ratio (CR) boost converters are in high demand for LED backlighting in a multitude of products including smartphones and tablets. The conventional boost (CB) converter with high CR has large inductor current ripples. thus requiring high-quality inductor to mitigate the efficiency degradation. Meanwhile, a narrow switching pulse width in the high CR converters limits the switching frequency (f_{SW}). The hybrid converter with flying capacitors (C_F) can widen the pulse width for the same CR, but hard-charging has been an issue in previous works [1-3].

Figure 11.5.1 shows the proposed 2-phase soft-charging hybrid boost (HB) converter, consisting of two branches. Each branch has an inductor L_1 (L_2), a flying capacitor C_{F1} (C_{F2}), and three switches M_1 (M_2), M_3 (M_4), M_5 (M_6). It operates in three states. In state-1, M_1 , M_3 , M_5 are on while M_2 , M_4 , M_6 are off. L_1 is energized, and current of L_2 (I_{L2}) decreases with a slope of α , and is divided into two parts, I_{C1} that flows into $\overline{C_{F1}}$ and I_{C2} that flows into the output (C_{F2} in series with output capacitor C_0). Considering $C_0 >> C_{F2}$, I_{C1} and I_{C2} are almost equal but they have opposite polarities, hence, both have a slope of $\alpha/2$. The status reverses in state-2. In state-3, M_1 and M_2 turn on while others turn off, hence, L_1 and L_2 are charged and there would be no change on C_{F1} and C_{F2} . The proposed HB works with state-1 \rightarrow state-3 \rightarrow state-2 \rightarrow state-3 periodically.

There are several benefits for this scheme. 1) The 2-phase operation reduces input and output ripples. 2) Since there is no direct charge transfer between C_{F1} and C_{F2} , nor between $C_{\rm F}$ and $C_{\rm 0}$, soft-charging is achieved. 3) Only M_3 and M_4 need to sustain a high $V_{\rm DS}$ that is V_0 in state-2 and state-1, whereas other switches can use lower voltage devices as their $V_{\rm DS}$ stresses are only $V_0/2$, reducing the switching losses and silicon area. 4) Due to C_{F1} and C_{F2} charge balancing, V_{C1} and V_{c2} should be $V_0/2$, and CR=2/(1-D), where D is the duty cycle. Here, for the 2phase operation, *D* should be larger than 0.5, and thus the minimum *CR* is four. Comparing to the conventional boost, we double the switching pulse-width for the same CR, allowing a higher f_{sw} .

Figure 11.5.2 presents the schematic of the proposed HB. We use NMOS switches to reduce the silicon area and gate capacitances. A separate gate-drive voltage $V_{\rm DR}$ =5.5V is used for low conduction losses. M_3 and M_4 are isolated devices with a $V_{\rm DS}$ rating of 20V, while others use 10V devices. Due to the floating sources of M_{3-6} , their gate-drive supplies V_{DR34} , V_{DR5} , V_{DR6} should be bootstrapped. A type-III compensation network is used, in which the error between V_0 and V_{RFF} is filtered and then compared with a saw-tooth wave working at 2×f_{SW}. The following 2phase generator divides the compared output by two, and reconstructs it into the PWM control signals for each phase at f_{SW} .

Figure 11.5.3 illustrates the schematic of the bootstrap generator and the gatedrive scheme. The deadtime DT_1 is added between the control signals S_1 and S_4 $(S_2 \text{ and } S_3)$, to prevent the feedthrough from $V_3(V_4)$ to the ground. For the bootstrap capacitors of M_3 and M_4 , they should be several times larger than the gate capacitance. For a 2-phase CB (2P-CB), two bootstrap capacitors may be required for independent gate-drive supplies, doubling the area. However, considering that M_3 and M_4 only turn on alternatively in the proposed HB, the bootstrap capacitor (C_{34}) can be shared without doubling the area. C_{34} can drive M_3 and M_4 in state-1 (at t_1) and state-2 (at t_3), respectively, and be charged by V_{DB} in state-3 (at t_2 and t_4), through an active diode D_{34} controlled by S_A . The interleaved charging of M_3 and M_4 is obtained by connecting the bottom plate of C_{34} to either V_1 or V_2 through the switches M_B or M_C . Another deadtime, namely, DT_2 is added between S_B and S_C , to prevent V_1 and V_2 feedthrough. For the gatedrive supplies V_{DR5} and V_{DR6} of M_5 and M_6 , they should be charged by a voltage source $V_0/2 + V_{DR}$ first, then be bootstrapped to $V_0 + V_{DR}$ in state-1 or state-2. Coincidently, V_{DR34} is bootstrapped to $V_0/2 + V_{DR}$ in both state-1 and state-2, and thus can be reused to charge the bootstrap capacitors C_5 and C_6 . In state-1, C_6 is charged from V_{DB34} through an active diode D_6 , while C_5 discharges to M_5 (at t_1). and vice versa in state-2 (at t_3). As V_{DR34} is reused to charge C_5 and C_6 , an additional drop on V_{DR34} will occur at t_1 and t_3 . However, thanks to the proposed topology, M_5 and M_6 are relatively small since they have low voltage stress and small high-side (HS) currents (to be explained next). This reduces both the sizes of C_5 and C_6 , and the V_{DB34} drop.

Figure 11.5.4 normalizes the power losses of the proposed HB to those of a 2P-CB, with CR=4.5. We choose both the same inductor DCR and switch on-resistance (R_{0N}) for the two topologies. However, all the switches in 2P-CB should use 20V devices. The calculated inductor DCR loss in the proposed design is lower than that of a 2P-CB, because the ripple of I_1 decreases with a smaller inductor voltage swing. This relaxes the inductor DCR requirement, reducing the inductor volume and cost. Thus, in the proposed design, we use 3.3µH inductors in 3010 package with a DCR of 166m Ω , instead of a 4020 package with a DCR of 38m Ω . Although we use two HS switches $M_3(M_4)$ and $M_5(M_6)$ in each phase, the summed conduction loss is still lower since they only conduct half of I_1 with a reduced current ripple. However, the conduction loss of the low-side (LS) switches M_1 and M_2 is thereby higher. Since the HS root-mean-square (RMS) current is much smaller than that of the LS, smaller HS switches can be used. For the switching losses, all the switches benefit from the halved $V_{\rm DS}$ swing, while the low-stress switches further enjoy a reduced gate charge ($Q_{\rm G}$). Thus, the switching losses of M_1 , M_2 , M_5 , M_6 are only 0.11 times, and M_3 , M_4 are 0.56 times that of the 2P-CB. The gate loss of LS decreases to 0.26 times from the C_{GS} reduction of the low-stress device, while that of the HS slightly increases by 1.26 times as a sum of two switches.

Considering the mismatches on L_1 and L_2 , the inductor currents can be automatically balanced, because the error from mismatch is fed-back through the C_{F1} and C_{F2} , ensuring the charge balancing $(Q_1 = Q_2)$ and removing the conventional phase currents balancing. For the mismatches on the C_{F1} and C_{F2} , I_{C1} and I_{C2} will be different, but the $\Delta V_{\rm C1}$ and $\Delta V_{\rm C2}$, caused by $I_{\rm C}$ discharging from the respective $C_{\rm F}$, will compensate each other and leave V_0 unchanged. The mismatch effects on *CR* are also minor, as $R_1 \times (C_{E1} + C_{E2})$ can be much larger than $1/f_{SW}$, where R_1 is the load resistance.

Figure 11.5.7 shows the chip micrograph of the proposed HB that is fabricated in a 0.35µm HV CMOS process, where the core area occupies 1.15mm×0.75mm. M_1 and M_2 have a large size to accommodate a high RMS current. We use f_{sw} =2MHz to balance the conduction and switching losses with smaller passives. $C_0=10\mu$ F and $C_{F1}=C_{F2}=0.47\mu$ F, and their ESRs can also be relaxed because of the reduced HS RMS currents. Figure 11.5.5 plots the steady-state waveforms of V_1 , V_2 , I_{11} , I_{12} , and V_0 , where V_{1N} =4V, *CR*=5, and I_0 =100mA. A 20V V_0 is obtained, with 15mV ripples. The measured peak efficiency is 93.5% at V_{IN} =4.2V, CR=4.5, and $I_0=100$ mA, and is 91.7% at $V_{IN}=3.3$ V, CR=6, and $I_0=75$ mA. The efficiency drops when CR increases, due to the more conduction losses on M_1 and M_2 . We estimate the power loss break-down, where the LS conduction loss is the largest portion as predicted. Figure 11.5.6 shows the performance comparison table. From the reduced voltage stress and shared M_2/M_4 bootstrap capacitor, we have achieved a small area. Also, we have reached higher efficiencies than the CB at high CRs, because of the reduced RMS currents, reduced switching losses, and the doubled pulse-widths. As compared to the previous HBs, this work prevents $C_{\rm F}$ hard charging, and thus it achieves higher efficiency with smaller $C_{\rm F}$ value. The efficiency can be improved by further optimizing transistor sizing, as in the current form the conduction loss dominates.

References:

[1] S. Shin et al., "A 95.2% Efficiency Dual-Path DC-DC Step-Up Converter with Continuous Output Current Delivery and Low Voltage Ripple," ISSCC, pp. 430-431, Feb. 2018.

[2] S. Marconi et al., "A Novel Integrated Step-Up Hybrid Converter with Wide Conversion Ratio," *IEE Trans. Power Electron.*, early access, DOI: 10.1109/TPEL.2019.2931875, July 2019.

[3] C. Hardy and H. Le, "A 10.9W 93.4%-Efficient (27W 97%-Efficient) Flying-Inductor Hybrid DC-DC Converter Suitable for 1-Cell (2-Cell) Battery Charging Applications," ISSCC, pp. 150-151, Feb. 2019.

[4] Texas Instruments, "TPS61181A White-LED Driver for Notebook Display," Datasheet, Feb. 2011. Accessed on Nov. 29, 2019,

<http://www.ti.com/lit/ds /symlink/tps61181a.pdf>

[5] T. Kong et al., "A 0.791 mm² On-Chip Self-Aligned Comparator Controller for Boost DC-DC Converter Using Switching Noise Robust Charge-Pump," IEEE JSSC, vol. 49, no. 2, pp. 502-512, Feb. 2014.

2020 IEEE International Solid-State Circuits Conference

198

2020 IEEE International Solid-State Circuits Conference Authorized licensed use limited to: Universidade de Macau. Downloaded on July 08,2020 at 04:33:07 UTC from IEEE Xplore. Restrictions apply.