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Abstract—Protein adsorption at solid surfaces has received
intense focus due to its high relevance to biotechnological appli-
cations. In alternative to experimental approaches, computational
methods such as molecular dynamics (MD) simulations are fre-
quently employed to simulate the protein adsorption process and
to study molecular interactions at the interfacial region. However,
a successful simulation of the adsorption process depends largely
on the initial adsorbed protein orientation on the surface. To
avoid sampling protein trajectory which will eventually fail
to adsorb, a workaround is to first determine the preferred
orientations of the protein relative to the surface and use them as
starting structures in MD simulations. Here, we present the first
application of particle swarm optimization (PSO) to search for the
low energy docking poses of a protein molecule on a solid surface.
Performing rigid-body translation and rotation of the protein with
energy minimization and empirical scoring function, our search
algorithm successfully located the low energy orientations of the
lysozyme molecule on a hydrophobic PTFE surface. Nine out
of ten predicted docking poses are energetically more favorable
than all poses sampled using a brute-force search. Three sets of
major adsorption sites are identified for the lysozyme and they are
in good agreement to results obtained by long MD simulations;
novel adsorption sites are also identified from the lowest energy
docking pose. Our method provides a reliable way to predict the
optimal protein orientations useful for computational studies of
protein-surface interactions.

Keywords—protein adsorption, particle swarm optimization, hy-
drophobic solid surface, PTFE, lysozyme

I. INTRODUCTION

Protein adsorption to surfaces is a fundamental biological
phenomena which is of high relevance to modern biotech-
nological applications such as the design of biochips, phar-
maceutical drug products, and biomaterials [1], [2]. Common
for these applications is the need to understand the protein
adsorption process, how proteins adsorb, whether the adsorp-
tion process alters proteins’ functions, or alters the efficacy
of bioproducts. Such valuable knowledge provide guidance to
the ultimate goal of rationally designing the proteins or the
interfacial material.

In addition to physical experiments, computational methods
such as molecular dynamics (MD) simulations are widely used
to study protein-surface adsorption due to the high-level of
detail that the methods can provide. In MD, the dynamics

of the protein is modeled explicity following the Newton’s
law of motion, hence, conformational changes of the protein
upon adsorption on surface can be closely followed. Some
atomistic and coarse-grained MD studies have been published
recently including different types and numbers of proteins on
physically, chemically, or structurally different surfaces [3]–
[7].

Nevertheless, using MD to observe slow biological pro-
cesses which occur on the microseconds-and-above timescale
is difficult. As pointed out by Wei and co-workers [3], the
simulation time required in the protein adsorption studies tend
to be rather long because the surface-induced dehydration
process of the approaching protein is very slow, taking around
70 ns for a small protein like lysozyme. Not only that, the
protein needs to be in the proper spatial orientation towards
the surface in order to overcome the barrier of electrostatic
repulsion [8]; otherwise, the protein is likely to diffuse away
from the surface.

To successfully simulate the protein adsorption process
and to cut down the computing time on the lengthly (and
usually uninteresting) rotational diffusion of the protein near
the surface, a reliable way is to first predict the preferred
orientations of the initial adsorbed protein, and then use these
as the starting structures for subsequent MD simulations. A
pioneering work was conducted by Zheng et al. [9] who
applied Metropolis Monte Carlo (MC) simulations to identify
the optimal orientations of the lysozyme protein on different
SAM surfaces. Only the non-bonded vdW and coulombic inter-
actions between the protein and the surface were considered
in their simulation protocol. Another prediction method was
proposed by Makrodimitris et al. [10] which is called Roset-
taSurface. This method combined the rigid-protein MC with
a minimization routine to optimize the interfacial side-chains
of the protein. The energy function is a linear combination
of five interaction terms including Lennard-Jones, solvation,
hydrogen bonding, and electrostatics. Instead of using a ran-
dom search, Hsu et al. [11] proposed to systematically rotate
the molecule stepwise and translate it perpendicularly toward
the surface to generate a complete contour map of protein-
surface interactions. This guided search was shown to perform
faster in locating the energy minimum than standard MC
search by approximately 10%. Undoubtedly, more efficient
yet reliable methods would always be desirable especially for
studies involving large proteins and many different surface978-1-4799-7492-4/15/$31.00 ©2015 IEEE
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models. Recently, Wei et al. [12] presented a use of the genetic
algorithm (GA) as the global optimization method to solve
the protein-surface prediction problem. GA is a popular evolu-
tionary algorithm that mimics the process of natural selection.
Using a genetic representation of the search (solution) space
called chromosome, GA applies genetic operators such as
crossover and mutation on selected parent solutions to generate
child solutions for the new generation. Their proposed hybrid
multi-loop GA method showed good agreement with a brute-
force search and it has been sucessfully applied in later MD
studies to predict the protein initial adsorbed orientations [3],
[13].

The particle swarm optimization (PSO) is yet another
popular search algorithm for solving complex optimization
problem. Also inspired by nature, the idea of the PSO is
to simulate the social behavior of bird flocking in looking
for food by iteratively updating the bird’s position based on
the knowledge of the swarm and own’s flying experience.
It is well-known for its simplicity and flexibility but the
applicability of it in protein-surface prediction problem has
not been investigated.

Here, we present the first application of PSO algorithm
on the protein-orientation prediction problem. The paper is
organized as follows. In Section II, we present the compu-
tational methods including the protein-surface model, the PSO
algorithm for protein-surface docking, the energy function, and
the software used in the method’s implementation. Independent
docking runs to predict the docked pose of the lysozyme
protein on the hydrophobic PTFE surface were conducted
and the results are presented in Section III. Here, the PSO
predictions are compared to the brute-force search in terms of
protein-surface interaction energy and the predicted protein-
surface contacts are compared with published computational
studies. Finally, we conclude the paper in Section IV.

II. COMPUTATIONAL METHODS

Similar to other structure prediction methods, our proposed
method for protein docking pose prediction on a solid surface
consists of two main parts: sampling and scoring. Here, PSO is
used to generate a protein pose by exploring the positional and
orientational space of the protein on a surface, then the fitness
of each pose will be assessed using a force field-based scoring
function accounting for the non-bonded interactions between
the protein and the surface. To evaluate the performance of
our proposed method, we apply it to predict the lysozyme
adsorption on a hydrophobic surface and compare the results
to a brute-force search.

A. The protein-surface model

The system is a full-atomistic model consisting of a
hydrophobic solid surface and a protein molecule. The hy-
drophobic surface is a layer of perfluorodecane molecules (a
short-chained polytetrafluoroethylene, PTFE) in a hexagonal
packing arrangement with a total surface area of 225 nm2.
The choice of this surface molecule is based on the fact
that fluorocarbon is the main composition of Teflon, the
surface coating material popularly used on modern lab-on-
a-chip devices. Hence, computational studies of protein ad-
sorption on fluorocarbon surfaces would be interesting to the

chip manufacturing industry and surface design research. The
surface model used in our case study was tested previously
in a MD simulation study of electrowetting of water droplets
under the influence of external electric fields [14], and the
surface was shown to yield electrowetting property similar to
experimental observations [15].

In this case study, the lysozyme molecule is selected as the
protein model. Lysozyme is abundant in tears, saliva, human
milk, mucus and other secretions of animals and thus it is
relevant to many biochemical experiments utilizing lab-on-a-
chip systems. It is noteworthy that lysozyme is classified as
a hard protein meaning that its overall structure cannot be
changed easily. Our model structure is the 129-residue hen
egg-white lysozyme molecule obtained from the PDB database
(PDB code 1AKI, resolution 1.5 Å) [16]. The structure is
preprocessed using the topology generation tool pdb2gmx from
GROMACS [17] with default setting for residue protonation
states and NH3+/COO− terminal capping. The total charge of
the protein is +8.0 e.

B. Pose sampling using PSO algorithm

The protein-surface docking problem is an optimization
problem where the goal is to look for the favorable position
and orientation of the protein molecule near a given surface
structure. Taking the protein as a rigid body, then a complete
search includes three translational and three rotational degrees
of freedom of the protein. In a homogeneous surface where
the surface molecule has a certain packing arrangement, the
positional search in parallel to the surface can be limited to the
lengths of the unit cell. Even so, a rough brute-force search
would involve the sampling of ≈ 1010 protein poses which
is inefficient and prohibitively expensive. Alternatively, by
applying metaheuristics algorithm, generation of each sample
becomes an intelligent procedure based on the “knowledge ”of
the previous samples. Among the metaheuristics algorithms,
particle swarm optimization is a popular technique which has
not been exploited, to the best of our knowledge, in the protein-
surface docking problem.

Particle Swarm Optimization (PSO) is a population-based
stochastic algorithm simulating the food-searching behavior of
a flock of birds [18], [19]. It is an extremely simple algorithm
that seems to be effective for optimizing a wide range of
functions. It requires only basic mathematical operators and
is computationally inexpensive in terms of both memory and
time complexity.

In PSO, a group of birds is called swam and each bird in
the swarm, also named particle, encodes a feasible solution of
a function to be optimized. During the search, each particle
adjusts its moves according to its own best solution and the
swarm’s best solution with some randomness. So the optimal
solution for the function is found by cooperation and competi-
tion among the swam themselves through iteratively updating
their moves. As a consequence of the knowledge sharing in
swarm, when one of the particles finds a promising region in
the search space, the rest of the swarm will follow quickly.
The high speed of convergence and the relative simplicity of
the algorithm make PSO an attractive method for our protein-
surface docking problem.
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Fig. 1. Flowchart of the PSO algorithm

In a multidimensional search space, the position of a
particle can be encoded in a D-dimensional vector where
the i-th particle is denoted as Xi = (xi1, xi2, ..., xiD). Sim-
ilarly, the velocity of the particle, represents the speed and
the direction of the particle’s movement, can be denoted as
Vi = (vi1, vi2, ..., viD). During the move, the best historical
position of the particle, or the personal best, is recorded
in Pi = (pi1, pi2, ..., piD) where the best historical position
among all particles, or the global best, in the swarm is recorded
in Pg .

At the start, all particles in the swarm of size N are
initialized with random positions and random velocities. In
each iteration, the swarm are manipulated according to the
velocity update equation (Eq. 1) and the position update
equation (Eq. 2) as follows:

Vi(t+ 1) = w · Vi(t) + c1 · rand() · (Pi(t)−Xi(t))

+ c2 · rand() · (Pg(t)−Xi(t)) (1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

where w denotes the inertia weight, c1 the cognitive weight,
and c2 the social weight. All three parameters are positive
constants and are usually defined empirically. The parameter w
plays the role of balancing the global search and local search.
If w is too small, all particles will fly quickly to the historical
best and lose the chance to perform global search. On the
other hand, if w is too large, the swarm knowledge will have
minimal effect on the search direction of the particles which
leads to slow convergence. Finally, rand() is a random function
generating random numbers in the range of [0, 1] on every
entry.

The flowchart of the PSO algorithm is shown in Figure 1.
In each iteration the fitness of each particle is calculated
using a scoring function of the particle’s position. Then the
personal best and the global best are updated if a better
score is obtained to reflect the improvement in the swarm
knowledge. Afterwards, the search direction and the search
speed are updated according to the equations of velocity-
update and position-update. If the particle’s velocity is over the
predefined limit V max, it is clamped to the maximum value,
see Eq. 3. Similarly, if the particle’s position is beyond the
positional limits, it is re-positioned to the valid range [a, b)
with a modulo function (see Eq. 4). The swarm is considered
converged until the number of runs exceeds or there is no
update of Pg in a number of iterations. The PSO parameters
used in our prediction method are listed in Table I. Clerc [20]
provided a reference setting of w = 0.721 and c1 = c2 = 1.193.

The positional limits for the protein lateral translation
(along X- and Y-axis) are surface-dependent. In our protein-
surface model, the lateral distance between any pairs of
surface molecules is about 5.8 Å, hence a positional limit of
±3 Å relative to the protein geometric center is applied. For
the vertical translation (along Z-axis), the translation limit is
defined as the minimum distance between the protein and the
surface. Our tests showed that a limit of 1.0 Å and 5.5 Å is
reasonable. For the maximum velocities, we used 10% of the
range of the positional limit as the maximum velocity of the
respective dimension. In our preliminary tests, these settings
allow the swarm to explore sufficiently while converge rather
quickly. The positional limits and the maximum velocities are
listed in Table II.

∀j ∈ [1, D], Vij =
Vij
|Vij |

× Vmax,j if |Vij | < Vmax,j

(3)

∀j ∈ [1, D], Xij =
(
(Xij − aij) mod (bij − aij)

)
+ aij

(4)

C. The energy function and energy minimization

Goodness of the PSO-generated protein pose on the surface
is assessed by a force-field based energy function. Two non-
bonded interactions are considered (see Eq. 5): the van der
Waals interaction (vdW) describing the attractive and repulsive
forces between molecules due to induced dipoles, and the
electrostatic interaction describing the electric forces between
two charged objects. The former can be modeled using the
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TABLE I. PSO PARAMETER SETTINGS FOR PROTEIN-SURFACE
DOCKING

Parameter Description Value

N Number of particles 200
w Inertia weight 0.721
c1 Cognitive weight 1.193
c2 Social weight 1.193
C convergence criteria 10 steps

TABLE II. POSITIONAL LIMITS AND MAXIMUM VELOCITIES FOR
DOCKING THE LYSOZYME ON THE PTFE SURFACE

Parameter Description Value

Xmax,r Positional limit for rotation about X, Y, Z [0°, 360°)
Xmax,tx Positional limit for translation along X [−3.0,+3.0) Å
Xmax,ty Positional limit for translation along Y [−3.0,+3.0) Å
Xmax,tz Positional limit for translation along Z [1.0, 5.5) Å
Vmax,r Maximum velocity of rotation about X, Y, Z [36, 36, 36]°
Vmax,t Maximum velocity of translation along X, Y, Z [0.6, 0.6, 0.4] Å

TABLE III. THE OPLS-AA FORCE FIELD PARAMETERS FOR THE
PTFE MOLECULE.

q (e) σ (nm) ε (kJ mol−1) OPLS-AA atom type

C of CF3 0.360 0.35 0.276144 opls_961
C of CF2 0.240 0.35 0.276144 opls_962

F -0.120 0.295 0.221752 opls_965

Lennard-Jones potential as shown in Eq. 6–8 and the latter
using the Coulomb’s law as shown in Eq. 9. The total protein-
surface interaction is obtained by summing the vdW and the
coulombic interactions between neighboring protein-surface
atom pairs where the neighborhood is determined by a distance
threshold.

E = EvdW + ECoulomb (5)

EvdW =

Np∑
i=1

Ns∑
j=1

4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

(6)

σij =
1

2
(σii + σjj) (7)

εij =
1

2
(εiiεjj)

1/2 (8)

ECoulomb =

Np∑
i=1

Ns∑
j=1

138.9(qiqj)

rij
(9)

where rij is the Euclidean distance between protein atom i and
surface atom j. Atom-type parameters ε and σ of the vdW term
and q of the Coulomb term are taken from the OPLS-AA force
field [21].

Each PSO-generated protein pose is subjected to short
period of energy minimization using the steepest descent
algorithm with the following settings: emstep = 100 nm (step
size), nsteps = 1000 (maximum number of steps), emtol =
100.0 kJ mol−1nm−1 (convergence force). Cut-off of 1.0 nm is

TABLE IV. GBSA PARAMETERS FOR THE PTFE MOLECULE

vdW radius for Born radius calculation (nm) Scale factor for OBC

C of CF3 0.1900 0.72
C of CF2 0.1900 0.72

F 0.1475 0.88

used for both coulomb and vdW interactions. For the purpose
of fast energy calculation, water is modeled implicitly using
the GBSA solvation model applying Onufriev-Bashford-Case
(OBC) algorithm for Born radii calculation [22]. The dielectric
coefficient of the implicit solvent is set to 78.3. The non-
polar part of the Born energy is calculated using the ACE type
approximation with surface tension set to 0.0054 kcal/mol/Å2;
the cut-off for the calculation of the Born radii is the same
as for non-bonded interactions, which is 1.0 nm. Since GBSA
parameters are not presented in GROMACS, they are derived
from parameters of the closest atom types and the values are
presented in Table IV.

D. Program implementation

The prediction program was implemented using the Python
language utilizing the structure manipulation functions from
the PyMOL molecular visualization package [23]. The energy
minimization and calculation were done using GROMACS
version 4.5.5 [17]. GROMACS is an efficient molecular
simulation package popularly used for molecular dynamics
simulations and energy minimization of structures. A wide-
range of atomic force fields are supported such as OPLS,
GROMOS, CHARMM and AMBER, etc. This allows us to
extend our program to suit different molecular models by
applying different force fields. We completed our testing on
a single PC which utilize an Intel®i7-4790 processor, 16GB
of system memory, and RAID-0 hard disk array. Ubuntu 14.10
was running on the hardware with the Linux 3.16 kernel,
Gromacs 4.5.5, PyMOL 1.7.1.3, and Python 2.7.8.

III. RESULTS

Results from 10 independent runs of our proposed PSO-
based docking algorithm using the lysozyme-PTFE model are
listed in Table V. They are sorted by the energy score and are
given an ID from pso1 to pso10 with the final global best
position and the energy of that configuration. The position
Pg is a vector of three rotational angles about X-, Y-, Z-axis
plus two lateral distances from the geometric center of the
initial protein position and the protein minimum distance to the
surface along Z. The energies of the predicted docking poses
range from -1060 kJ mol−1 to -811 kJ mol−1, which gives
an average of ≈-940 kJ mol−1. On average, a PSO docking
run converges in 31.4 iterations and requires 62,800 energy
calculations. All runs were conducted using the same set of
search parameters in Tables I and II.

To observe the behavior of the PSO algorithm in finding
the optimal protein docked pose, the energy score and the
position vector of the global best Pg are plotted against the
iteration number. As shown in Figure 2a, the energy of the
Pg in the docking run pso1 is improved very fast in the first
half of the search process and it slows down considerably at
the second half. This drastic change in energy is caused by
updates of large movement of the protein molecule relative to
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TABLE V. RESULTS FROM 10 INDEPENDENT RUNS OF OUR PROPOSED PSO-BASED DOCKING METHOD USING THE LYSOZYME-PTFE SYSTEM. THE
RUNS ARE SORTED BY THE ENERGY SCORE OF THE PREDICTED DOCKING POSE AND LABELED WITH PSO1–10.

ID Set§ Pg(rx, ry, rz, tx, ty, tz) E(kJ mol−1) Number of iterations Total number of E(Xi) evaluations]

pso1 1 241.85, 65.78, 110.28, -1.31, -0.95, 1.34 -1060.16 52 10,400
pso2 2 229.45, 171.49, 257.38, 0.86, 1.66, 1.58 -1013.04 44 8,800
pso3 2 226.79, 176.05, 102.38, -0.10, -0.31, 1.64 -1007.43 35 7,000
pso4 3 199.79, 188.18, 180.08, -0.29, 0.94, 1.62 -959.92 27 5,400
pso5 1 300.51, 64.09, 303.63, -1.42, 1.86, 1.78 -954.11 58 11,600
pso6 2 221.43, 177.86, 190.29, 0.34, -0.42, 1.47 -918.48 28 5,600
pso7 2 223.86, 171.40, 230.22, -1.13, -1.90, 1.17 -907.24 16 3,200
pso8 1 219.96, 48.99, 130.83, -1.12, 0.87, 2.04 -890.88 26 5,200
pso9 1 248.40, 67.35, 113.82, -0.78, -1.26, 1.55 -878.61 18 3,600
pso10 - 252.17, 211.52, 319.75, 2.08, 0.47, 1.47 -811.26 10 2,000

Average -940.11±73.94 31.4±15.77 6,280±3,154.12
§Poses are clustered into sets of best docking poses based on the residue’s minimum distance to surface profiles. Due to the worst energy and dissimilarity to any existing clusters,

pso10 is not classified.
]The total number of E(Xi) evaluations is the number of iterations multiplied by the number of birds N in the PSO search.
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Fig. 2. Evolution of (a) the energy score and (b) the protein position and
orientation of Pg from the docking run pso1.

the surface. Interestingly, large lateral (tx, ty) and rotational
moves of the protein occurred only in the first two iterations
of the PSO search (see Figure 2b), meaning that a potentially
surface-contacting “protein surface” can be determined rather
quickly as long as its vertical distance to the surface is
reasonably close. The remaining search process fine-tunes the
vertical separation (tz) between the protein and the surface and
performs some small orientational adjustments of the protein.

The current setting considers the search as converged if no

better position than Pg is found in 10 iterations. Our tests of
more iterations to convergence (e.g. 30 and 50) did not show
improvements. Likewise, different number of particles N were
also tested. A large number of particles makes each iteration
more computationally expensive due to increased number of
fitness evaluations, which is the most time consuming process
in the PSO loop. However, a sufficiently large number will al-
low the exploration to be done more thoroughly and preventing
the swarm to be trapped at local minima in high energy regions.
Based on our observations, the value of N = 200 turns out to
be an optimal value for this case study.

Due to limited computational power, it is not possible to
scan the complete configurational space of the protein on the
surface, in which the sampling size is in the order of at least
1010. However, to get an idea of how good the PSO-found
docking poses are, we run a limited brute-force search on the
same protein-surface system starting from the configuration of
pso1. By systematically rotating the protein about the X- and
Y-axis with a step size of 6°, and about the Z-axis in -30°, 0°,
and 30° while keeping the same lateral and vertical position of
the protein, a lower energy configuration than pso1 cannot be
found. The second lowest energy in this systematic search (the
lowest one is the starting configuration, which is pso1) turns
out to be -855.15 kJ mol−1 with the configuration of [139.86,
71.79, 110.20, -1.31, -0.95, 1.34]. This pose is energetically
less favorable than 9 of the 10 PSO-found poses and almost
200 kJ mol−1 worser in energy value than pso1.

Previous computational studies of protein-surface adsorp-
tion revealed that protein could be adsorbed in different
orientations facilitated by different protein residues [9] [24]
[3]. In order to identify these important protein residues of
the lysozyme for PTFE adsorption, we clustered the docking
poses based on their pose similarity, i.e. poses which have
the highest similarity in their residue’s minimum distance to
surface profiles are grouped together. In this way, three sets of
similar docking poses are obtained: the first set includes pso1,
pso5, pso8, and pso9; the second set includes pso2, pso3, pso6,
pso7; the third set has only one predicted pose which is pso4.
Pso10 is not classified because it has the worst energy score
presumably due to premature convergence (completed in only
10 iterations). Docking poses in the same set are similar in
orientation (rx, ry, rz) but different in position (tx, ty, tz) at
the surface. Because the model surface is homogeneous, the
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Fig. 3. Predicted docking poses from set 1: (a) Residue’s minimum distance
to the surface. (b) Snapshot of the lowest energy docking pose in the set,
which is pso1. Identified adsorption sites are Arg14, His15, Asn77, Thr89,
and Arg128. The protein is drawn with cartoon representation and the surface
atoms with spheres. The contacting residues identified as the major adsorption
sites in the set are shown as sticks. Water is modeled implicitly and thus it is
not shown.

same or similar protein orientation at different surface position
might achieve very similar energy scores.

For each set, we identify the major adsorption site of
lysozyme as the contacting residue found in the majority of
the docking poses in the set. The definition of “contacting
residue” is taken from [24] that is the protein residue with a
minimum distance of < 5 Å to the surface. Profiles of the
residue’s minimum distance to the surface in set 1–3 and
snapshots of the best predicted docking pose in the set are
shown in Figure 3–5 respectively.

In set 1, five major adsorption sites are identified; they
are Arg14, His15, Asn77, Thr89, and Arg128. Except Arg128
which is the contacting residue of 3 docking poses (out of 4),
all others are contacting residues in all docking poses in the set
by definition. It is noteworthy that Arg128 was also reported
as a major adsorption site in a recent long molecular dynamics
simulation of lysozyme on polyethylene surfaces (PE) by Wei
et al. [3]. It was observed in their study that Arg128 and
Leu129, the two C-terminal residues, reached the PE surface
only after 100 ns in the simulation, whereas this contact is
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Fig. 4. Predicted docking poses from set 2: (a) Residue’s minimum distance to
the surface. (b) Snapshot of the lowest energy docking pose in the set, which is
pso2. Identified adsorption sites are Lys1, Val2, Lys33, Asn37, Phe38, Asn39,
Gly126, and Arg128.

successfully identified by our prediction method in relatively
much shorter computing time. Interestingly, adsorption sites
Arg14, His15, Asn77, and Thr89 have so far not been reported
in previous computational studies of lysozyme on hydrophobic
surfaces. Instead, neighboring residues, Pro79 and Ile88, were
found by Zheng et al. [9] as the closest residues to the
CH3-SAM surface in a monte carlo simulation for protein
orientation prediction.

In set 2, eight major adsorption sites are identified; they
are Lys1, Val2, Lys33, Asn37, Phe38, Asn39, Gly126, and
Arg128. All are contacting residues from all docking poses
in the set except Arg128, which can only be identified in 3
docking poses. Except Gly126, all major adsorption sites were
determined to be the contacting residues in the MD simulation
of Wei et al. [3].

Finally, in set 3, twelves major adsorption sites are iden-
tified; they are Lys1, Val2, Lys33, Asn37, Asn39, Gln41,
Ala42, Thr43, Asn44, Arg45, Thr47, and Arg68. This time,
all contacting residues are determined as the adsorption sites
in Wei’s study.
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Fig. 5. Predicted docking poses from set 3: (a) Residue’s minimum distance to
the surface. (b) Snapshot of the lowest energy docking pose in the set, which is
pso4. Identified adsorption sites are Lys1, Val2, Lys33, Asn37, Asn39, Gln41,
Ala42, Thr43, Asn44, Arg45, Thr47, and Arg68.

IV. CONCLUSION

Particle swarm optimization is a fast global optimization
method which is well-known to solve complex optimization
problems. Here, we presented the first application of PSO on
the prediction of protein docking poses on a solid surface.
Using the lysozyme-PTFE model, our method successfully
located the low energy docking poses of the protein, among
which the predicted lowest energy pose is about 200 kJ mol−1

lower than the lowest structure found by a brute-force search.
In addition, we analyzed the predicted adsorption sites of the
protein and obtained good agreement to previous computa-
tional studies. Our current implementation employs an external
program for energy evaluations. In the future, we plan to
internalize the energy evaluation routines and explore efficient
ways in computing interaction energies. A faster prediction
tool would allow us to investigate different surface models
and proteins for the fundamental understanding of the protein
adsorption process and the rational design of surface.
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