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Abstract—A Field Programmable Gate Array (FPGA) based
system for single-lead electrocardiogram signal QRS complex
detection is presented in this paper. The system consists of
Quadratic Spline wavelet transform, moving average filter,
signed squaring and a Modulus Maxima Pair Recognition
module. The parallel and pipelined architecture of the system
allows a maximum throughput equals 46MS/s. The QRS
Complex detection accuracy is validated using MIT/BIH
arrhythmia database, in which, sensitivity of 99.35% and
predictivity of 99.70% are achieved. Less than 2000 logic
elements are utilized to implement this algorithm in an Altera
cyclonell FPGA. The performance and resource consumption
show that the design also suits for digital ASIC, which benefits
in processing high volume of ECG data.

I. INTRODUCTION

UTOMATIC detection of the QRS complex is necessary

for efficient extraction of beat-to-beat intervals (RR)
from long electrocardiogram (ECG) recordings such as
nighttime data or 24-hour Holter monitoring, which is useful
for heart rate variability analysis, ECG classification and
compression. QRS Complex is the most significant part of the
ECG waveform and the detection of its position is helpful for
the determination of other ECG characteristic points. In most
cases, the temporal location of the R-wave is taken as the
location of the QRS complex.

In the recent decades, many QRS complex detection
approaches have been proposed; for example, algorithm base
on band-pass filter and nonlinear transform [1], algorithm
from the field of artificial neural networks [2], filter banks
[3], etc. The performance of applying wavelet transform
method to the task of QRS complex detection was reported in
[4, 5]. This kind of method benefits from the time-frequency
analysis property of wavelet transform. By employing several
detection rules, the overall detection accuracy can exceed
99.8% [4]. However, some of these rules are too complex for
hardware real-time implementation.

On the other hand, detection errors can be reduced by the
application of computationally more expensive algorithms.
However, particularly in the case of ASIC design, the
computational complexity means larger chip area and larger
power consumption. Hence, a tradeoff between complexity
and detection performance needs to be carefully balanced.

The following sections will illustrate the whole profile of
the QRS complex detection system, including feature
extraction by linear and nonlinear transform, decision making.
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Fig. 1. System architecture of the proposed system.

Lastly, evaluation result on standard database is reported.
Despite the performance of an algorithm on a database is not
the ultimate answer as to its utility in a clinical environment,
it provides a standardized means of comparing the basic
performance of one algorithm to another [1].

II. ALGORITHM AND IMPLEMENTATION

The proposed beat detection algorithm consists of
Quadratic Spline wavelet transform, moving average, signed
squaring and Modulus Maxima Pair Recognition. The
arrangement of these functional blocks is illustrated in fig.1.

A. Quadratic Spline wavelet transform

In the first step, Quadratic Spline Wavelet Transform
(QSWT) is chosen. Theoretically, the discrete and inflexion
points of a signal can show different obvious characteristics
in multi-resolution after quadratic spline wavelet transform.
Making use of this advantage, the high pointed QRS complex
(especially R peak) in the ECG signal, after wavelet
transform, will be transformed into pairs of positive
maximum and negative minimum.

The Fourier transform of Quadratic Spline Wavelet y(x)
is[6,7]
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The high pass and low pass filters H(®w) and G(®) are Eq. 2
and Eq. 3 respectively.
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Let O (w) be the transfer function of the equivalent filter.

Then, we have
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From the equations above, we can derive that the
equivalent filter coefficients are the integral multiple of 2
power an integer depend on the scale of wavelet j, that is,

FilterCoefficients = mx2~""""" @)
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This characteristic of Quadratic Spline wavelet makes it
suitable for FPGA implementation, since all the equivalent
filter coefficients can be represented by fixed point binary
decimal without losing any information. The width of the
binary decimal is equal to the absolute value of 4-3;. If the
data being processed can be also fully express in fixed point
binary form, the whole hardware filter can have the same
result as the floating point version in software. This is just the
case for MITBIH (Massachusetts Institute of Technology and
Beth Israel Hospital) arrhythmia database, which we use to
validate the proposed algorithm, because all the data collected
in this database is obtained by an 11-bit ADC after an analog
amplifier.
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Fig. 2. The amplitude-frequency responses of equivalent filter Qj(®) at
different scales corresponding to 360 Hz sampling frequency;
=180w/x.

TABLE 1
THE BANDWIDTH OF Q'(0) ~ Q*(0)
Q'(®) Qo) Q) QY w) Q(w)
3dB 90.00~1  29.92~8 11.52~3 5.76~19  2.88~9.
Bandwidth  80.00 424 8.88 44 36

Taking the advantage of the fixed point nature of the filter
and the data, the error of the hardware filter is easy to be
estimated since it only consist of truncation error. We employ
QSWT scale 3 in our system, the reason is not only its filter
coefficients is shorter and also have the best performance in
simulation while comparing the detection accuracy with other
scale of QSWT. Thus only the filter in the path of wavelet
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transform scale 3 is implemented.

From the equation above, the coefficient of QSWT scale 3
equivalent filter is the integral multiple of 1/32. As a result, 5
bit binary decimal is enough for the representation of
coefficients of the wavelet filter. To reduce the area of the
circuit, we truncated the binary fraction of the output, which
will induce a white noise range from 0 to -1 with a -0.5 mean.
This truncation error is negligible when comparing with the
amplitude of the transformed signal.

B. Moving average filter

A 6-point moving average filter (MAF) is employed after
the QSWT since the 60-Hz power line interference need to be
eliminated. A FIR filter is designed to implement this step.

C. Signed squaring

The equivalent filter response of step A and step B enhance
the spectra of QRS complex but also cover the spectra of P
and T wave. In some records of MITBIH arrhythmia
database, extraordinarily strong P wave or/and T wave exist.
Absolutely they will attenuate by the QSWT and MAF, but
sometimes they still have amplitude which is high enough to
threaten the detection accuracy of the coming Modulus
Maxima Pair Recognition module. Therefore, signed
squaring as blow is used to enhance the QRS complex and
suppress while maintain the sign of signal for the next step.

y[n]= sign(x[n])xx*[n] ®)
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Fig. 3. Test with ECG signal from MIT/BIH Arrhythmia database
record 102.

D. Modulus Maxima Pair Recognition

Compare to many other QRS complex detection algorithm
with only one feature, that is the positive maximum amplitude
of the transformed signal, we apply a two features recognition
system, both the positive maximum and negative minimum
are considered.



The detection of a QRS complex is accomplished by
comparing the features against two threshold levels. In the
proposed system, the threshold levels are computed to be
signal dependent such that an adaption to changing signal
characteristics is possible.

As a result, hardware implementation of the Modulus
Maxima Pair Recognition (MMPR) module consists of two
parts. The first part is threshold level computation and the
second part making decision based on the comparison
between transformed signal and the thresholds.

The guideline in selecting the threshold is given by
empirical equations,

PT = APNL + 0.254PSL C)

NT = ANNL + 0.25ANSL (10)
In (9) and (10), PT stands for positive threshold whereas NT
for negative threshold. APNL is the average positive noise
level and APSL is the average positive signal level; both these
two levels are calculated by average of most recently 8
positive noise peaks or signal peaks. It is identical for the
negative part which using average negative noise level
(ANNL) and average negative signal level (ANSL). Thereby
the two thresholds can be adjusted according to different
signal amplitude and noise level to achieve higher detection
accuracy.

The local extreme value of transformed signal has an
amplitude large than this threshold is seen as Modulus pair
candidate. It will be confirmed as a QRS complex if the
subsequent zero crossing and opposite local extreme is found
in a proper time interval. This job is accomplished by a state
machine with several embedded rules. And the zero crossing
between a maxima pair is considered as the location of the R
peak.

The bit width of this part is minimized because it has linear
correlation with the circuit area and power.

III. PERFORMANCE EVALUATION

A. Implement Result

The proposed system is implemented on an Altera FPGA
chip. The data representation in the system is varying from
module to module, since the minimum bit width requirement
for enough accuracy of different module is not the same. A
varying bit width can reduce the resource consumption while
maintaining a low enough truncation error.

Table II describes the hardware usage, which consists of
the proposed algorithm and also a UART data exchange
circuit, of the proposed system. It uses about 3% of total
resource for both logic elements and registers of target
platform, which is a Cyclone II EP2C70F896C6N FPGA chip
placed on an Altera DE2-70 board.

TABLE II
HARDWARE USAGE OF THE SYSTEM

Total Logic .
Elements Total Registers
Hardware 1964 1244
Usage
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B. Verification method

The verification data flow is MITBIH arrhythmia database
stored in a PC and sends to the FPGA as fast as it can through
UART. Although we already use the faster mode of UART,
its speed is still much lower than the maximum processing
speed of the proposed system. Thereby, the hardware can
perform heart beat detection in real time. The result will be
sent back to PC and compare to the standard annotations
within the database to obtain detection accuracy of the
proposed system. Our proposed system is a single lead
detection system, thus the first channel of each record is used
in the evaluation of the algorithm.

There are several modules of the system bring processing
delay into the finally result, such as the QSWT, moving
average filtering, MMPR modules and so on. This kind of
delay will make the detected temporal location of QRS
complex fall behind their real position. As a result, we move
the location of detections ahead by a fixed number of
samples, which depends on the total processing delay of the
whole system, before it is compared with the reference
annotations.

C. Detection accuracy

The entire hardware of the QRS detection has been tested
correctly. The testing goes through all the 48 records (each
lasts for 30 minutes) in MITBIH arrhythmia database to
determine whether our detector has detected the beats
correctly. The detected QRS complex temporal locations are
considered as a true positive if they located around the
corresponding reference annotation within 110 milliseconds.
Thus it is not necessary to place annotations precisely on the
major local extremum as in the MITBIH Data Base reference
annotations [11].

FP+FN
— )
TB

There are totally 109,267 heart beats has been tested, with
741 missed beats (FN) and 330 extra detected points (FP),
that is a sensitivity of 99.35% and a predictivity of 99.70%.
According to Eq. (11), the accuracy of the system is 99.02%.
This excludes episodes of ventricular flutter that occur on
tape 207. Tap 105, 108, 203 and 210 contribute more or less
half of the failed detections because of these taps have poor
signal to noise ratio.

Accuracy =1—

IV. DISCUSSION OF SYSTEM ARCHITECTURE

There are several possible architectures, such as different
filtering method or different nonlinear transform, of the
system can provide real time detection. We perform
quantitative investigation on some of them to see which one is
better for our application. The architecture of the proposed
system is finally determined after we finish this kind of
experiments.

A. Scale selection of OQSWT

Typical frequency components of a QRS complex range
from about 10 Hz to about 25 Hz [12]. Therefore, from table I,



only QSWT scale 3 and 4 is possible for the extraction of
QRS complex from ECG signal. And it seems that QSWT
scale 4 befits more this task since the centre frequency of this
scale best-fits the spectrum of QRS. In particular, we evaluate
the detection accuracy of the system under the same
conduction for both QSWT scale 3 and 4.

Compare to scale 4, scale 3 can provide higher detection
accuracy under the same validation condition. The reason is
that signal after QSWT scale 4 will contain more low
frequency component. As a result, the transformed signal will
suffer from the interference of high P and/or T wave and thus
produce more false positives (FP).
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Fig. 3. The amplitude-frequency responses of equivalent filter Qj(®) at
scale 3 and 4 corresponding to 250 Hz sampling frequency; and
spectrum of P and T wave of a typical ECG signal obtain from record
“sel123” of MITBIH QT database.

B. Moving Average

The moving average stage is also necessary for the
detection algorithm. By adding this filter, the high frequency
noise can be attenuated and thus over 150 failed detections
can be avoided.

C. Signed Squaring

Both QSWT and Moving Average filter are linear
transform of the signal. The nonlinear transform is useful in
this situation to improve the SNR of the feature signal.

Without using Signed Squaring, there are totally 596 FN
and 1243 FP. Compare to the performance of system with
signed squaring, the total failed detection decrease from 1884
to 1083, that is reduced by 801 failed detection or 42.52%.

The discussions above are summarized in fig.4.

V. CONCLUSION

A real-time QRS detection algorithm and its corresponding
FPGA implementation are presented in this paper. The whole
algorithm is written in verilog HDL and thus can operate in
high speed. QRS complex can be detected reliable via this

68

algorithm after the baseline wandering, power line noise, high
P and T wave is removed by linear and nonlinear transform.
The automatically threshold adjustment section enables the
adaptability of decision making to diverse signal
characteristics.

In the evaluation using MITBIH arrhythmia database, the
algorithm failed to properly detect only 0.98 percent of the
beats. The proposed algorithm is possible to transplant into
ASIC because the low computational complexity and high
detection accuracy of the circuit.

Error Rate
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Fig. 4. Error rate of different system architecture evaluate by using
MITBIH arrhythmia database; MAF stands for moving average
filtering, SS stands for signed squaring.
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