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Isolated-BB Input and a Wideband TIA-Based PA Driver
Achieving <-157.5dBc/Hz OB Noise
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For the sub-6GHz 5G New Radio (5G-NR), most FDD bands expand their signal
bandwidth (BW) to 20MHz. In the NR-n74 Band (~1.45GHz), the duplex spacing
(Af) is only 48MHz. Such a small Af/BW ratio (2.4) challenges the design of a
multiband FDD SAW-less transmitter (TX) that must emit negligible noise at the
nearby receiver (RX) band. Previous works [1,2] use high-order baseband (BB)
filters, along with large bias currents, to suppress the out-of-band (OB) noise,
but the power (>90mW) and area (~1mm2) are large for an OB noise of
-158dBc/Hz [2]. Although the charge-domain direct-launch digital TX [3] is more
flexible and area-efficient (0.22mm2), it entails off-chip baluns to extend the RF
coverage, and has a limited output power (-3.5dBm). An alternative is to embed
a gain-boosted N-path filter into the TX [4], such that high-Q bandpass filtering
can be performed at a flexible RF. Still, the filtering effectiveness of [4] is moderate
when the signal BW reaches 10MHz, showing an OB noise of just -154.5dBc/Hz.

This paper reports a multiband FDD SAW-less TX supporting a 20MHz BW. Its
full schematic is detailed in Fig. 10.1.1. The key techniques are a BW-extended
N-path filter-modulator (FIL-MOD), an isolated-BB input and a wideband TIA-
based PA driver (PAD). Fully integrated in 28nm CMOS, our TX manifests a
consistently low OB noise (<-157.5dBc/Hz) for different 5G-NR bands in 1.4 to
2.7GHz. Small chip area (0.31mm?), sufficient output power (3dBm) and high TX
efficiency (2.8 to 3.6%) are concurrently achieved.

BW-Extended N-Path FIL-MQD: In [4] the gain-boosted N-path filter is merged
with the 1/Q modulator to realize high-Q bandpass filtering at a flexible RF, relaxing
the order of the BB filters. The proposed FIL-MOD brings the concept to a wider
BW design. As shown in Fig. 10.1.2 (left), the I/Q modulation is realized by
upmixing the 4-phase BB input (1/Q and differential) via SW,. The 4-path SW__is
driven by a 4-phase 25%-duty-cycle LO (LO,.,). The upmixed signal is then
amplified by an RF gain stage (-G4). If -G, is simply fed back by an N-path
switched-capacitor (SC) negative-feedback network (NFN) made by SW, 5 and Gy,
the OB rejection will suffer from a hard tradeoff with the passband BW as in [4].
To decouple that we introduce an N-path SC positive-feedback network (PFN)
made by SW; and C,. The parallelized PFN and NFN co-synthesize a complex-pole
pair as explained by its analytical model in Fig. 10.1.2 (right). Owing to the
bidirectional transparency of passive mixers, a BB lowpass response can be
frequency-translated to RF as a bandpass one. By omitting SW and SW,, the
BB equivalence will be a -G,,; surrounded by both PFN and NFN. The PFN is
modeled as a negative-gain stage -A; (A;~0.9) in series with C,, whereas the NFN
is only C;. With the PFN, a 2"-order input conductance is created (Z,)'=
82roCeC+8(1-GroAz)C; when w«(roC) . Transferred from Vg (S) to Vgg o(S), the
passhand BW is expanded by the complex-pole pair. The natural frequency is
given by wgg=[1/C:C;roZs(1+A;)]", and the pole Q factor is proportional to C,/C;.
The overall transfer function Vge(s)/Vgg,(S) exhibits a 4"-order bandpass response
with the upper and lower natural frequencies given by wg; =0 g+wgs. AS a result,
the passhband BW is expanded along with an improved steepness of the OB
rejection (Fig. 10.1.3, upper).

A simple NMOS device realizes the gain stage -G, such that its bias and signal
currents (lpp and lgy) can be absorbed by its following TIA-based PAD. This co-
design results in both linearity and TX efficiency. The differential implementation
not only helps the output power, but also allows using cross-feedback capacitors
C, to cancel the parasitic effects associated with -G,;, trimming the passband
shape. G; offers the design freedom to balance the OB rejection with the passband
flatness at both V,p and Vy p (Fig. 10.1.3, upper).

Isolated-BB Input: In the I/Q modulator of [4], the BB signals are injected to the
gain-boosted N-path filter via a passive-RC network. Their mutual loading effects
induce noise crosstalk and degrade the Q factor of the created bandpass response
at RF. To hinder this effect, we propose in Fig. 10.1.1 an isolated-BB input (SWg
and Cg) that utilizes the adjacent phase of each non-overlap LO to time-interleave
the operation of the BB injection and N-path filtering. This technique enhances
the OB rejection of the BB noise (e.g., from the DACs) and preserves the BW of
the FIL-MOD. The OB rejection (Fig. 10.1.3 lower) is improved at a small Cg (<2pF)
when comparing it with the passive-RC-BB input. The lower limit of Cg is set by
the passbhand BW. The on-resistance of SWg (Rgyg) offers additional freedom to
balance the BW of the FIL-MOD with the OB noise rejection (Fig. 10.1.3 lower).

Wideband TIA-Based PAD: A single-ended voltage-input amplifier as a PAD can
suffer from low linearity and output power. Herein we propose a differential
wideband TIA-based PAD to absorb the bias and signal currents of -G,;. The
differential RF outputs are combined by an on-chip 1.4:1 transformer (xfmr),
shunted by a 5bit tunable C; (0.1pF/step) to expand the RF coverage. Designed at
a 1.8V supply and with the cross-coupling Cs,a small thick-oxide MOS transistor
(M,) is adequate to enhance the reverse isolation, reliability and voltage gain (by
4.6dB, from simulation). We use M, to isolate the two cross-coupling capacitors
(Cy and Cs) serving different purposes. The G, linearizer (-G, biased in the triode
region) improves the CIM; by cancelling the 3“-order nonlinearity term of -G,
(biased in the saturation region). The entire -Gm, + PAD has a simulated OIP; of
26.7dBm. Variable-gain control, not realized in this work, can be applied to the
PAD.

With the high-Q bandpass filtering at both V, » and V5, the LO-modulated phase
noise can be effectively suppressed. From simulation, the LO generator only
contributes 3.8% of the total OB noise (-158.5dBc/Hz) at 80MHz offset, whereas
the major contributors are -G, (27.8%), SWy_ (14.4%), SW, (7.2%) and PAD
(18.2%). The remaining noise contributions are from the 50Q) load and bias circuit.
SWs only contributes 1.2%, and is hence downsized (6pm/30nm) to save the LO
power. Due to the Miller effect created by the loop gain of -G,,;, small physical C;
(5pF) and SW_ 5 (20pm/30nm) are allowed to reduce the parasitic effects and LO
power [5]. The simulated G, is 110.2mS and inverting gain from V,p to Vyp is
-1.6V/V.

The proposed fully integrated TX occupies 0.31mm?in 28nm CMOS (Fig. 10.1.7).
By using a differential self-bias input-buffer amplifier, the LO generator shows a
simulated power efficiency of ~4.8mW/GHz and a phase noise of -158.4dBc/Hz
at 40MHz offset. We use transmission-gate switches to reduce the LO feedthrough
and improve the linearity.

A high-Q bandpass response is consistently measured at different NR bands by
simply tuning the LO frequency (Fig. 10.1.4). The flat passhand BW is >20MHz.
The output power is 3dBm at 2.535GHz (NR-n7 Band) with a 20MHz signal BW.
The 1/Q mismatch image and LO feedthrough are <-40dBc by manual calibration
at the 4-phase BB sources (not the focus of this work). The ACLR; (ACLR,) is
-44 4dBc (-58.7dBc) and EVM is 1.9%. The output noise is -158dBc/Hz at 120MHz
offset, and CIM; (CIM;) is -54dBc (-64.2dBc). The results are consistent at
1.88GHz (NR-n2) and 1.4485GHz (NR-n74) as summarized in Fig. 10.1.5. The
0B noise degradation is <1.5dB under power backoff. The ACLR, , vary <2dB
regardless of the signal BW of 10MHz or 20MHz. The power consumption
increases from 55.1mW at the NR-n74 Band, to 70.5mW at the NR-n7 Band. The
TX can support a wider signal BW >20MHz, but it has to trade-off with OB rejection
(Fig. 10.1.3, lower left). To improve both the OB noise and signal BW, we can
incorporate a better BB DAC and more BB filtering.

Figure 10.1.6 summarizes the chip performance and compares it with the prior
art [3,4,6]. This work demonstrates a number of performance advantages.
Although [3] reports a smaller die area than this work, it requires off-chip baluns
to combine the differential outputs, and its output power is 6.5dB lower.
Comparing with [4], this work supports a 2x wider signal BW and achieves a 3dB
lower OB noise and a 4dB higher output power. With similar output power and
0B noise as [6], this work shows higher area efficiency (3.3x) and TX efficiency
(56%).
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Figure 10.1.1: Proposed fully integrated multiband SAW-less TX for 5G NR. It = Figure 10.1.2: The FIL-MOD is realized by merging a gain-boosted N-path filter
features a BW-extended N-path FIL-MOD, an isolated-BB input, and a wideband = into the I/Q modulator to realize tunable high-Q bandpass filtering at flexible
TIA-based PAD to absorh the bias and signal currents of -G,,, for better linearity RF. The passband BW is widened by using the 4-path SC NFN + PFN to form a

and TX efficiency. complex-pair pole with -G,,.
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Figure 10.1.7: Die micrograph of the fabricated TX in 28nm CMOS.
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Figure 10.1.81: Upper: [4] is based on the passive-RC-BB input, gain-boosted
N-path filter and voltage-input amplifier as the PAD. Lower: This work features
the isolated-BB input, gain-boosted N-path filter with BW extension, and a
wideband TIA as the PAD.

10 dB/div Ref 10.00 dBm
(2 ——
o =
56 461 dBc 46§ dBc
BU Y aB -BUFaBT
2.3dBm
10MHz BW
2] Poas,
o

@[~ -60.0dBc ||| -46.7dBc -46.0dBc ]| -60.4dBc |
ICenter 2.535 GHz Span 50 MHz|
#Res BW 220 kHz #VBW 220 kHz Sweep 20 ms|

© 0 o o 06 © o o © © o 6 ©0 © © o

© 06 0 6 0o 0o 0 o © o o 0 o o o o

©6 6 o 6 o o © o ©o 6 o 6 6 6 © o

0o o 6 ©o 0 0 0o o © 0o 6 06 06 06 ©o ©

© © 0 6 06 o © o © © 06 6 0 o o ©

© o 06 o © 0o ©o o © 0o o 06 0 & 0o o

o 6 o 6 @ © o o @ 0 0 © o © o0 o

© ©6 o 6 o ©o o © ® o o 06 © © o o

1.9% EVM 1.9% EVM

NR-n7 (2.535GHz) - 10MHz BW NR-n7 (2.535GHz) - 20MHz BW
Figure 10.1.S3: Measured output spectrum and constellation diagram in the

output spectrum in Fig. 10.1.4.

e 2020 IEEE International Solid-State Circuits Conference

978-1-7281-3205-1/20/$31.00 ©2020 IEEE





