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Abstract—This work presents a 70-nW QRS detector 
implemented in 0.45-V 0.18-�m CMOS technology. The 
algorithm is optimized with decimated quadratic spline wavelet 
transform (DQSWT) and window-based extrema difference curve 
(WEDC). The DQSWT achieves up to 60% computational unit 
reduction when compared to the conventional method, while the 
WEDC enhances the QRS detection accuracy while maintaining 
a low computational complexity. Combined with a decision-
making stage with simple mechanism, the proposed algorithm 
achieves a sensitivity of 99.62% and a precision of 99.70% in 
MIT-BIH arrhythmia database. 
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I. INTRODUCTION 
Long-term monitoring of the QRS complex in 

electrocardiogram (ECG) can support the diagnosis of many 
cardiovascular diseases [1]. This calls for the design of energy 
efficient QRS detectors with high detection accuracy. Apart 
from technology scaling and circuit-level innovations, 
optimization in the algorithm level is important to further 
reduce the hardware computation and power overhead. 

Typically, the QRS complex can easily be contaminated 
by motion artifacts, powerline interference and electrode 
contact noise. Consequently, a pre-processing stage and a 
decision-making stage [1] are necessary to achieve accurate 
detection. Yet, the complicated filter taps coefficients [2] and 
intensive computations [3] such as derivative, squaring and 
search-back mechanisms can incur excessive power 
consumption in ASIC implementations. A detector with 
customized analog front-end can achieve extremely low 
power [4], but with reduced detection accuracy due to the 
process dependence and performance variability. Benefitting 
from the time-frequency representation and the simplicity of 
implementation, digital filters based on wavelet transform 
(WT) are widely adopted in QRS detectors [1, 5]. Yet, the 
QRS complex enhancement using the conventional WT is still 
insufficient, leading to the requirement of complicated finite 
state machines [1] or extra refinement modules [5] in the 
decision-making framework with significant hardware 
resources occupation and high power consumption, to ensure 
a satisfactory detection accuracy. 

This work proposes a low-power high-accuracy QRS 
detector with the pre-processing stage optimized using the 
decimated quadratic spline wavelet transforms (DQSWT) and 
the window-based extrema difference curve (WEDC) 
techniques. The reduced hardware overhead can significantly 
reduce the power overhead while requiring only a simple 

decision-making stage to ensure high detection accuracy. 
Implemented in a standard 0.18-�m CMOS technology with a 
0.45-V supply, simulation results using the MIT-BIH 
arrhythmia database show that the power consumption is 
merely 70 nW while achieving a detection sensitivity and a 
precision of 99.62% and 99.70%, respectively. 

II. PRE-PROCESSING STAGE 

A. Decimated Quadratic Spline Wavelet Transforms 
Fig.1 shows the proposed QRS detector framework, where 

before the WT, the high-frequency small spikes are first 
eliminated with a moving average stage. The WT of a signal 
���� can be expressed as,  
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where ���� is the mother wavelet with dilation 	 � ��  and 
translation � with � as the scale number. The WT is calculated 
according to Mallat’s algorithm [1], with the architecture from 
Fig. 2 using cascade filter banks. Yet, this results in high 
memory access and computational complexity. We selected a 
quadratic spline function as the mother wavelet due to its 
orthogonality, compact support, and one vanishing moment. 
And its tap coefficients can be implemented with hardware-
friendly operators of adders and shifts. The frequency 
responses of �����and �� �  are !�"� � #$%&'�()* %

'�+ and 
,�"� � -.#$%&'�*.� %

'�, respectively. The equivalent filter at 
each scale becomes, 
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Fig. 1.  Structure of the proposed system. 
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Fig. 2.  Architecture of Mallat’s algorithm. ����, and ���� are 
respectively the high-pass and low-pass filters. 
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The QSWT coefficients in one scale are the first derivative 
of a smooth function, such that the QSWT signal can embody 
the slope information of the input ECG signal. To achieve an 
enhanced QSWT signal for the ease of detection, the scale 
number is optimized to generate a high degree of energy 
concentration of the QRS complex. Based on the annotations 
in the MIT-BIH database with 360-Hz sampling rate, we used 
the record #100 to analyze the energy concentration of 
enhanced QRS complex in different scales with Extrema 
Difference (ED) and Extrema Steepness (ES), as highlighted 
in Fig. 3. ED is the max-min difference in every transformed 
QRS complex which reflects the sharpness of the slope 
change. ES is the average slope of extrema max-min value 
representing the concentration of ED. Simulation results 
confirm that scale 3 achieves its largest response in ED and 
ES, leading to a prominent transformation of the QRS 
complex. 

Conventionally, automatic ECG analysis such as heart 
beat detection and disease diagnosis demand high sampling 
rates, which are far greater than the Nyquist sampling rate of 
the QRS complex. This can result in redundant data 
processing during QRS detection. In this work, we developed 
a decimated QSWT by applying a decimator on the QSWT 
signal to reduce the hardware occupation and power 
consumption. Fig. 4 presents the simulation of the decimation 
numbers in terms of the detection accuracy and power 
consumption. A larger decimation number can sacrifice the 
accuracy while a smaller value can increase the power 
consumption. We can observe that there exists an optimal 
decimation number of 4 (corresponding to 90 Hz based on the 
MIT-BIH database and utilized here), below which detection 
accuracy starts falling. In ASIC implementations, the 
decimation is moving forward and we only adopted the 
relevant QSWT coefficients for calculation. Fig. 5 exhibits the 
proposed DQSWT structure with a significant computation 

unit reduction of up to 60% from the conventional one without 
using DQSWT.  

B. Window-Based Extrema Difference Curve 
For the ease of detection, the QRS complex energy in the 

DQSWT signal is further enhanced by WEDC, which 
represents the difference between the positive and negative 
extrema values in a local window. The WEDC is calculated 
as, 
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where �9�: is the local window at position �  and �  is the 
width of the window. As the QRS complex occupies a period 
of ~0.12s [3], within which a modulus of positive and negative 
extrema can be found. A larger window width can enhance the 
peak energy ratio in WEDC and hence increase the R-peak 
detection accuracy, but with the penalty of more memory 
access that can result in a higher power consumption. Fig. 6 
shows the simulated accuracy with different local window 
widths. It suggests an optimal width of 90ms, below which the 
sensitivity drops dramatically due to the loss in the modulus. 
Fig.7 illustrates an example of WEDC together with the input 
ECG signal. It can be observed that all the peaks in the WEDC 
are positive and are aligned with the QRS complexes of the 
corresponding ECG. Also, the WEDC signal is always 
positive which effectively mitigates the computational 
workload without the need to consider the polarity. The 
WEDC can intensify the slope of the frequency response curve 
of the DQSWT and help restrict the false positives caused by 
T waves with higher unusual spectral energies. 

III. DECISION-MAKING STAGE 
After the QRS complex is enhanced in WEDC, a dynamic 

thresholding can be employed to search for the candidate R 

 
 

Fig. 3.  Energy concentrations of the QRS complex in different 
scales. 
 

Ac
cu

ra
cy

 (%
)

0.2

0.4

0.6

0.8

1

99.3

99.5

99.7

99.9

No
rm

ali
ze

d 
Po

we
r C

on
su

m
pt

io
n

Sensitivity
Precision
Power

Decimation Number
654321

Optimal 

 
 

Fig. 4.  Detection accuracy and normalized power consumption 
in different sampling rates. 

 
 

Fig. 5.  Implementation architecture of the proposed DQSWT. 
 

 
 

Fig. 6.  Detection accuracy versus different window widths. 
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peaks. Fig. 8 plots the detailed mechanism. When the WEDC 
signal exceeds the threshold the location, it is denoted as 
Loc_begin, indicating a candidate QRS complex. Then, the 
system searches for the maxima in the coming peak. When the 
coming yEDC[n] is smaller than half of the detected maxima, 
the searching state ends, and the corresponding position is 
located as Loc_end. If the distance between Loc_begin and the 
Loc_end of the last R peak is less than 100 ms, this candidate 
peak is regarded as noise, otherwise the maxima position is 
denoted as a R peak fiducial. A new threshold is then 
calculated as a×Ramp, where a is the scaling factor set to 0.45 
and Ramp is the mean amplitude of 8 earlier R peaks in WEDC.   

IV. RESULTS AND CONCLUSIONS 
We evaluated the proposed algorithm according to the 

precision EF � �E&��E C GE� , and sensitivity H# � �E&
��E C GI�, where �E, GE and GI are the total heart beats, 
false positive and false negative, respectively. This work 
achieves a EF of 99.70% and a H# of 99.62% with the MIT-
BIH database. In addition, other databases (NSR, QT, 
Challenge 2014, and Fantasia) of 1.7 million �E with a large 
variety of ECG morphologies and acquisition conditions have 
also been tested, achieving over 99.4% H#  and EF  which 
indicates the high robustness of the algorithm. This work was 
also translated into Verilog HDL and tested in the Modelsim 
with 99.35% EF and 99.2% H# using the MIT-BIH database. 
Fig. 9 shows that it occupies 0.12 mm2 and draws only 70 nW 
when implemented in a 0.45-V 0.18-μm CMOS technology 
[6]. Table I presents the benchmark with the state-of-the-art. 
The t-PUT algorithm [4] draws the lowest power consumption 
but sacrifices the detection accuracy, which is unacceptable in 

many practical clinical scenarios. The P-T algorithm [3] 
achieves the highest detection accuracy thanks to the 
complicated pre-processing and search-back mechanisms. 
The QSWT [1] and HWT [5] based algorithms obtain 
comparable detection accuracy, but the complicated decision-
making mechanisms on the contrary consume > 5.9× higher 
power consumption than this work.  
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Fig. 7.  Internal pre-processing signals. 
 

 
 

Fig. 8.  Illustrative mechanism of the decision-making stage. 
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Fig. 9.  Chip layout of the proposed QRS detector. 

Table 1: Performance benchmark 

 

TBCAS’12 TBCAS’14 TEHM’15 TBCAS’17 This work
Tech.(μm) 0.35 0.13 0.13 0.18 0.18

Algorithm QSWT t-PUT P-T HWT DQSWT 
+ WEDC 

Vdd (V) 1.8 0.3 0.6 1 0.45
Freq (kHz) 0.3 1 1 N/A 1
Power(nW) 830 34 764 410 70#

Se (%) 99.31 97.76# 99.85 99.6 99.62#

Pr (%) 99.70 98.59# 99.93 99.77 99.70#

Area(mm2) 1.11 0.1 0.22 0.484 0.12
# Simulation results only 


