# A Single-Stage Current-Mode Active Rectifier with Accurate Output-Current Regulation for IoT

Fangyu Mao<sup>1</sup>, Yan Lu<sup>1\*</sup>, Jie Lin<sup>1,2</sup>, Chenchang Zhan<sup>2</sup>, Seng-Pan U<sup>3,1</sup>, and Rui P. Martins<sup>1,4</sup>
1-State Key Laboratory of Analog and Mixed-Signal VLSL, University of Macau, Macao, China 2-Southern University of Science and Technology, Shenzhen, China
3-Synopsis Ltd., Macau; 4-Instituto Superior Técnico, Universidade de Lisboa, Portugal \*Email: yanlu@umac.mo

Abstract—This paper presents a single-stage wireless charger using a current-mode active rectifier with accurate output current regulation for efficient wireless charging. As we know, the rectifier processes an AC input voltage/current and a pulsing output current which are difficult to be accurately sensed on chip with small area and power overheads. The proposed current sensing technique uses a replica sensing stage in parallel with the main power stage. It consists of two small cross-connected sensing PMOS transistors, a small filtering capacitor, and a dynamic replica load. In addition, by adaptively tuning the delay of the power NMOS driving signal, the charging current is regulated precisely. This single-stage wireless charger operates at 6.78MHz, and is designed in a 0.35µm CMOS process. Simulation results show a minimum 97.5% current regulation accuracy over a 10× (from 100mA to 1A) output-current range. The peak efficiency of 94% is achieved with 4.2W output power.

Keywords— AC-DC converter; current-mode active rectifier; current sensing; wireless charging; wireless power transfer (WPT)

# I. INTRODUCTION

The growing number of Internet-of-Things (IoT) devices calls for convenient and efficient solutions for power delivery. Wireless battery charging via inductive coupling is an attractive solution, because it can deliver a wide range of power and helps the IoT devices to be water-/dust-proof. In addition, the requirements of small system volume and accessing a sealed space (like inside a tire) can also be satisfied by the inductive wireless charging.

In [1], a wireless power receiving unit was designed for the wireless charging, with a dc-dc buck converter following the rectifier. Therefore, a constant DC output voltage can be supplied. However, the dc-dc converter requires two large power transistors and one bulky off-chip inductor, demanding both chip and board areas. In addition, as a constant voltage supply cannot charge a battery directly, a post-stage charger between the wireless power receiving unit and the battery is necessary, which further increases the volume and cost of the system. Therefore, the charging scheme proposed in [1] is not suitable for IoT applications, where small volume and low cost is required. To remove the area-consuming dc-dc converter, a 3-mode reconfigurable resonant regulating rectifier was presented in [2]. By periodically switching the rectifier between different modes, like the pulse-width modulation (PWM) in a dc-dc converter, the output voltage can be regulated to a stable value, like for example 5V. However, a charger is still needed. In [3], a reconfigurable bidirectional wireless power transceiver with maximum-current charging mode was presented for battery-to-battery (B2B) charging. The battery is directly charged by the rectifier, eliminating a separate charger. Therefore, the charging efficiency can be improved, and the system volume can be reduced, both of which are favorable for IoT applications. However, unlike the B2B situation, the direct charging current may be larger than the maximum value that the battery of IoT devices can stand with. Therefore, a charging-current regulation scheme is necessary for low-capacity batteries.

In [4], an actively detuned wireless power receiver is proposed for the wireless charging of multiple IoT devices. The charging current is regulated by detuning the receiving coil. Thus, the battery is protected from the overcurrent, and the power allocation among multiple receivers is balanced. However, an auxiliary rectifier and auxiliary coil have to be adopted, which increase the chip and PCB area. Moreover, the charging current sensing is retrieved from a locally sensed peak voltage  $V_{\text{peak}}$ . But, because the charging current is the averaged value of the rectifier output current,  $V_{\text{peak}}$  cannot stand for the value of the charging current, especially when reverse current occurs during the rectification. As a result, the accuracy of the current regulation is limited.

The on-chip current sensing technique for dc-dc converters proposed in [5] can provide a high sensing accuracy with a small chip area. With this technique, a mirrored PMOS transistor matches a power PMOS transistor with a ratio of 1:1000. The mirrored transistor sources a fraction of current of the power transistor, and the sensing accuracy is determined by the matching performance of the current mirror. However, this technique cannot be directly applied to the full-wave rectifier in the wireless charging application, because the currents through its power transistors are AC currents.

In this paper, we present a single-stage current-mode active rectifier with accurate output current sensing and regulation. An on-chip averaged AC current sensing circuit is proposed with a pair of small replica cross-connected sensing PMOS transistors. And then, the charging current is regulated by adaptively tuning the delay of the driving signals of the power NMOS, with high accuracy and small chip area. Therefore, our single-stage active rectifier can directly charge the batteries of the IoT devices. Without a separate charger, small volume and high efficiency can be achieved. This paper is organized as follows. Section II describes the proposed single-stage active

This work was jointly supported by the Macao Science and Technology Development Fund and the National Natural Science Foundation of China under the project FDCT-NSFC 006/2016/AFJ.





Fig. 1. (a) Schematic of the active rectifier, and (b) its main waveforms.



Fig. 2. Schematic of the proposed single-stage active rectifier with accurate output current regulation.

rectifier in detail. Then, the simulation results are given in Section III. Finally, we draw the conclusions in Section IV.

# II. PROPOSED CURRENT-MODE ACTIVE RECTIFIER WITH ACCURATE OUTPUT CURRENT REGULATION

Fig. 1(a) shows the schematic of a conventional active rectifier.  $M_{P1}$  and  $M_{P2}$  are the cross-connected power PMOS transistors for reducing the gate switching loss [6].  $M_{N1}$  and  $M_{N2}$  are the power NMOS transistors driven by comparators, forming the active diodes.  $r_S$  is the inner resistance of the battery.  $I_{AC}$  is the received AC input current. After  $I_{AC}$  is rectified by the four power transistors and filtered by the output capacitor C<sub>0</sub>, the averaged output current  $I_{CHG}$  is obtained. Fig. 1(b) exhibits the main waveforms of the active rectifier. Due to the active diode delay,  $t_D$ , caused by the comparators and buffers,  $M_{N1}$  and  $M_{N2}$  don't turn on/off at the zero crossing points of  $I_{AC}$ . Thus, reverse current exists in  $I_{AC1}$ 

and  $I_{AC2}$ .  $I_{CHG}$  is the averaged value of  $I_{AC1}+I_{AC2}$  and will be decreased by the reverse current. The relationship between  $t_D$  and  $I_{CHG}$  can be given by:

$$I_{CHG} = \frac{2}{\pi} \cos(2\pi \cdot \frac{t_D}{T}) \cdot \left| I_{AC} \right|, \tag{1}$$

where *T* is the period of  $I_{AC}$ . From (1), we find that  $I_{CHG}$  can be effectively regulated by continuously tuning the delay time  $t_D$ . Thus, we don't need any extra charger circuit between the rectifier and the battery, and direct charging can be realized, which significantly enhances the power conversion efficiency (PCE). Therefore, different from the previous active rectifier designs that try to minimize the active diode delay time, here, we are tuning the active diode delay for the output current regulation. In the following part of this section, we will introduce the accurate  $I_{CHG}$  sensing and the adaptive  $t_D$  tuning.



Fig. 3. Schematic of the comparator with adaptive offset control.

|             |                   | - CRITIC | _     |     |             |      |
|-------------|-------------------|----------|-------|-----|-------------|------|
| $M_{P1,2}$  | M <sub>N1,2</sub> | Co       | $C_0$ | N   | $R_{\rm S}$ | rs   |
| 100mm/0.5µm | 50mm/0.5µm        | 10µF     | 1nF   | 500 | 50Ω         | 0.2Ω |

# A. Current Sensing Technique

Fig. 2 shows the schematic of the proposed single-stage active rectifier with output current regulation. The power receiving coil  $L_2$  is connected in series with the resonant capacitor C<sub>2</sub> and acts as an AC current source. The current sensing circuit consists of a pair of cross-connected current sensing PMOS transistors MP1' and MP2', a filtering capacitor Co', and a dynamic replica load. MP1' and MP2' are the replica switches of M<sub>P1</sub> and M<sub>P2</sub>, respectively, which are scaled down in size by a ratio of N. The current through  $M_{P1}$  and  $M_{P2}$  is replicated first by M<sub>P1</sub>' and M<sub>P2</sub>', and then filtered to obtain the sensed DC current,  $I_{\text{SENSE}}$ . To make sure that  $I_{\text{SENSE}}=I_{\text{CHG}}/N$ , the source voltage of  $M_{P1}$ ' and  $M_{P2}$ ',  $V_{SENSE}$ , should be equal to  $V_{\text{BAT}}$ . Therefore, a negative feedback loop based on OTA<sub>1</sub> is added. If  $V_{\text{SENSE}} > V_{\text{BAT}}$ , the output of OTA<sub>1</sub>,  $V_{\text{TR}}$ , will be lower to decease the impedance of the replica load. Then,  $V_{\text{SENSE}}$  will become smaller. If  $V_{\text{SENSE}} < V_{\text{BAT}}$ ,  $V_{\text{TR}}$  will get larger to increase the impedance of the replica load. Then,  $V_{\text{SENSE}}$  will become larger. When the feedback loop gets into steady state,  $V_{\text{SENSE}}$  is regulated to be equal to  $V_{BAT}$ . Thus, the voltages on all the terminals of M<sub>P1</sub> and M<sub>P2</sub> are mirrored to that of M<sub>P1</sub>' and M<sub>P2</sub>', and  $I_{\text{SENSE}}=I_{\text{CHG}}/N$  will be achieved. Meanwhile,  $I_{\text{SENSE}}$  is transformed to voltage  $V_{\rm S}$  by  $R_{\rm S}$  for regulating the charging current, which is going to be discussed next.

### B. Adaptive Delay Tuning

Similar to  $I_{\text{SENSE}}$ , the reference current  $I_{\text{REF}}$  is transformed to voltage  $V_{\text{REF}}$  with the resistor  $R_{\text{REF}}$ . By making  $V_{\text{S}}=V_{\text{REF}}$ , an accurate current regulation of  $I_{\text{CHG}}=N \times I_{\text{REF}}$  can be obtained. Thus, another negative feedback loop is added. As shown in Fig. 2, OTA<sub>2</sub> compares  $V_{\text{S}}$  and  $V_{\text{REF}}$ . If  $V_{\text{S}}>V_{\text{REF}}$ , which means  $I_{\text{SENSE}}$  is larger than  $I_{\text{REF}}$ ,  $V_{\text{TD}}$  will be adjusted to increase the delay of the active diodes. Then,  $I_{\text{CHG}}$  and  $I_{\text{SENSE}}$  will decrease. On the other hand, if  $V_{\text{S}}<V_{\text{REF}}$ , the active diode delay will be decreased. Then,  $I_{\text{CHG}}$  and  $I_{\text{SENSE}}$  will increase. When the



Fig. 4. The simulated operating waveforms of the proposed active rectifier when the targeted charging current is 500mA.

feedback loop gets settled,  $I_{\text{SENSE}}=I_{\text{REF}}$  can be determined. Considering that  $I_{\text{SENSE}}=I_{\text{CHG}}/N$ , therefore,  $I_{\text{CHG}}=N \times I_{\text{REF}}$ .

To control the active diode delay, a comparator with adaptively-controlled offset is adopted as shown in Fig. 3. The comparator is realized with the push-pull common-gate input stage.  $M_1$  and  $M_2$  are used to provide the switched offset current and to tune the off-delay of the comparator. The higher the  $V_{TD}$ , the larger the offset current, requiring more time to charge up node A. As a result, the off-delay will be increased. Meanwhile, other delay tuning methods, like the voltage-controlled delay line, can also be applied for the same purpose.

#### **III. SIMULATION RESULTS**

The proposed single-stage active rectifier with outputcurrent regulation works at 6.78MHz, and is designed in a  $0.35\mu m$  CMOS process. In the simulation, a capacitor of 10mF is used to emulate the battery. The critical parameters are listed in Table I. To drive the active rectifier, a power link supplied by a voltage source is applied, which can provide a peak



Fig. 5. Simulated PCE and current regulation accuracy under different charging currents at (a)  $V_{BAT} \approx 2.5$  V and (b)  $V_{BAT} \approx 4.2$  V.

| TABLE II.COMPARISON WITH PRIOR WORKS |                          |                    |                |                          |                           |  |  |  |  |
|--------------------------------------|--------------------------|--------------------|----------------|--------------------------|---------------------------|--|--|--|--|
|                                      | [1] TPE 2016             | [2] JSSC 2017      | [3] ISSCC 2017 | [4] ISSCC 2017           | This Work                 |  |  |  |  |
| Process                              | 0.18µm BCD               | 0.35µm CMOS        | 0.35µm CMOS    | 0.18µm CMOS              | 0.35µm CMOS               |  |  |  |  |
| <b>Regulation</b> Type               | Voltage Regulation       | Voltage Regulation | No Regulation  | Current Regulation       | <b>Current Regulation</b> |  |  |  |  |
| Frequency (MHz)                      | 6.78                     | 6.78               | 6.78           | 6.78                     | 6.78                      |  |  |  |  |
| PCE                                  | 80.86%                   | 92.2%              | 91.5%          | 74%*                     | 94%**                     |  |  |  |  |
| V <sub>OUT,MAX</sub> (V)             | 5                        | 5                  | 4.2            | 4                        | 4.2                       |  |  |  |  |
| P <sub>OUT,MAX</sub> (W)             | 6                        | 6                  | 1.65           | 0.52                     | 4.2**                     |  |  |  |  |
| Regulation Accuracy                  | N/A                      | N/A                | N/A            | N/A                      | 97.5%**                   |  |  |  |  |
| <b>Off-Chip Components</b>           | 1-Inductor, 3-Capacitors | 1 Capacitor        | 1 Capacitor    | 1-PCB coil, 2-Capacitors | 1 Capacitor               |  |  |  |  |

\*End-to-end efficiency \*\*Simulation results

charging current of 1A when the output voltage  $V_{BAT} \approx 4.2V$ . When  $V_{BAT} < 4.2V$ , the peak  $I_{CHG}$  can be larger than 1A.

Fig. 4 shows the simulated waveforms of the proposed active rectifier when the targeted output current  $I_{CHG}$  is 500mA. The whole process can be divided into three stages. In stage I,  $V_{\text{SENSE}}$  is forced to be equal to  $V_{\text{BAT}}$  by the feedback loop, which is necessary for the accurate current sensing. In stage II, with an increased  $V_{\text{TD}}$ , the reverse current of  $I_{\text{AC1}}$  and  $I_{\text{AC2}}$  is increased, which reduces  $I_{CHG}$  gradually. At last, the circuit gets stable in stage III, and  $I_{CHG}$  is regulated to 500mA.

Fig. 5 shows the PCE and the current regulation accuracy of the proposed active rectifier with output current ranging from 0.1A to 1A. Because the battery is supposed to be charged from 2.5V to 4.2V, we select two cases,  $V_{BAT} \approx 2.5V$ and  $V_{\text{BAT}} \approx 4.2$ V, to demonstrate the results. From Fig. 5, we observe a minimum accuracy of 97.5% achieved when  $I_{CHG}=0.1A$  and  $V_{BAT}\approx 4.2V$ . The peak PCE is 94%, which is obtained when  $I_{CHG}=1A$  and  $V_{BAT}\approx 4.2V$  (when the output power is 4.2W). Table II shows the comparison with prior works. The proposed single-stage active rectifier achieves higher PCE and output current regulation accuracy.

# IV. CONCLUSIONS

Charging current regulation in battery charging improves the battery health. In this paper, we present a current-mode active rectifier with accurate output current regulation serving as a single-stage wireless charger. Instead of minimizing the active diode delay, we employ the delay for an effective output

current tuning. With two negative feedback loops, the output current is accurately sensed and regulated. The simulation results show a minimum current regulation accuracy of 97.5% over a 10× output-current range. The maximum PCE of 94% has been achieved when the output power is 4.2W.

#### REFERENCES

- [1] H. G. Park et al., "A design of a wireless power receiving unit with a high-efficiency 6.78-MHz active rectifier using shared DLLs for magnetic-resonant A4WP applications," IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4484-4498, Jun. 2016.
- L. Cheng, W. H. Ki, and C. Y. Tsui, "A 6.78-MHz single-stage wireless [2] power receiver using a 3-mode reconfigurable resonant regulating rectifier," IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1412-1423, May 2017.
- M. Huang, Y. Lu, S. P. U, and R. P. Martins, "A reconfigurable [3] bidirectional wireless power transceiver with maximum-current charging mode and 58.6% battery-to-battery efficiency," in IEEE Int. Solid-State Circuits Conference (ISSCC), Feb. 2017, pp. 376-377
- [4] N. V. Desai, C. Juvekar, S. Chandak, and A. P. Chandrakasan, "An actively detuned wireless power receiver with public key cryptographic authentication and dynamic power allocation," in IEEE Int. Solid-State Circuit Conference. (ISSCC), Feb. 2017, pp. 366-367.
- [5] C. F. Lee and P. K. T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
- Y. Lu and W.-H. Ki, "A 13.56 MHz CMOS active rectifier with [6] switched-offset and compensated biasing for biomedical wireless power transfer systems," IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 334-344, Jun. 2014.