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Abstract. This paper presents a novel method based on deterministic annealing 
to circumvent the problem of the sensitivity to atypical observations associated 
with the maximum likelihood (ML) estimator via conventional EM algorithm 
for mixture models. In order to learn the mixture models in a robust way, the 
parameters of mixture model are estimated by trimmed likelihood estimator 
(TLE), and the learning process is controlled by temperature based on the 
principle of maximum entropy. Moreover, we apply the proposed method to the 
single-trial electroencephalography (EEG) classification task. The motivation of 
this work is to eliminate the negative effects of artifacts in EEG data, which 
usually exist in real-life environments, and the experimental results demonstrate 
that the proposed method can successfully detect the outliers and therefore 
achieve more reliable result. 
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1 Introduction 

A brain computer interface (BCI) is a system forming a direct connection between 
brain and machine, which enables individuals with severe motor disabilities to have 
effective control over external devices without using the traditional pathways as 
peripheral muscle or nerves [1-3]. The brain activities are often recorded 
noninvasively by electroencephalogram (EEG), which has excellent temporal 
resolution and usability, and the EEG signal is therefore a popular choice for BCI 
research. In order to control an EEG-based BCI, the user must produce different brain 
activity patterns, which are recorded by electrodes on the scalp, and then features are 
extracted from the EEG signals and translated into the control commands. In most 
existing BCIs, this translation relies on a classification algorithm [4], [5].  

Finite mixture models, in particular Gaussian mixture models (GMMs) [6] have 
been applied to EEG signal analysis in BCI system due to their computational 
tractability, ease to implement, and capability of representing arbitrarily complex 
probability density function with high accuracy. In [7] and [8], the mixture of 
Gaussian was introduced as the online classifier and the parameters were updated in a 
simulated online scenario. In [9] a GMM-based classifier was used to separate the 
signal into different classes of mental task, where adaptation is concerned by using a 
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supervised method. Similarly, [10] and [11] proposed an online GMM classifier via 
the decorrelated least mean square (DLMS) algorithm. On the other hand, GMMs can 
be also applied to model the features extracted from EEG data in which the rest or 
active state of brain signals are modeled so that the changes in EEG signal can be 
detected rather than classified [12], [13].  

The conventional approach to learning the parameters of mixture models is 
maximum likelihood (ML) estimator via EM algorithm [14]. However, a well-known 
problem of the ML estimator via conventional EM algorithm for GMMs is its 
sensitivity to atypical observations. On the other hand, noise is ubiquitous in EEG 
signals due to the factors such as measurement inaccuracies, physiological variations 
in background EEG, muscle and eyes blink artifacts. Therefore, contaminated samples 
in EEG data should be pruned to achieve a reliable classification result. 
Unfortunately, none of the GMM-based EEG analysis algorithm, to our best 
knowledge, considered the negative effects of the outliers in EEG data. 

In machine learning community, one approach to detect the outliers is to fit the 
model based on maximum trimmed likelihood (MTL) to select a subset of the data, on 
which the mixture models are trained to the majority of the data, whereas the 
remaining data which do not follow the models are viewed as anomalous data. The 
ML estimator can be viewed as a special case of MTL estimator. The resulting 
estimation of the parameters obtained by trimmed likelihood estimator (TLE) is 
usually more robust, and therefore can be used for outlier detection [17] [18].  One 
drawback of this approach, however, is that it is a local algorithm, and therefore 
usually gets trapped in local optima with a poor estimation.  

The motivation of this paper is to go a step further along in this research direction, 
that is, to develop a robust learning algorithm for mixture models. In particular, we 
propose a deterministic annealing (DA) learning approach for robust fitting of 
GMMs. The GMMs are learned based on MTL via EM algorithm and the learning 
process is controlled by annealing temperatures, leading gradual optimization of the 
objective function, so that the local optima problem of MTL can be avoided. As a 
result, the outliers can be automatically detected so that the estimation of parameters 
of GMMs is more robust and reliable.  

The reminder of this paper is organized as follows. The robust learning algorithm 
is developed in Section 2, and experiments on both synthetic and benchmark real data 
sets are reported in Section 3. In Section 4, we apply our method on EEG signal 
analysis. The conclusions are provided in Section 5. 

2 Deterministic Annealing for Robust Learning 

2.1 Mixture Models, Trimmed Likelihood Estimator and FAST-TLE 

Given a data set 1{ ,..., },N=X x x consisting of N independent identical distributed 

(i.i.d.) observations of a random d-dimensional variable x . If it follows a K-
component finite mixture distribution, its probability density function (pdf) can be 
given by:  
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where kπ is the mixing coefficient, and kθ is the parameter set for the kth component.  

Define 1 1{ ,..., , ,..., }K Kπ π≡Θ θ θ as the complete set of the parameters specifying 

the mixture model. The ML estimate of the optimal set of the parameters is defined as 
a maximum of the log-likelihood function:  
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It is well known that the ML estimator cannot be obtained in a closed form. Hence, 
we need to resort the optimization techniques, and one common choice is the EM 
algorithm, which is an iterative procedure to find the ML estimator of the parameter 
set of a probability. For more detailed description of the EM algorithm see [6], [14]. 

To estimate GMMs in a robust way, one approach is to calculate the MTL solution, 
which is given by 
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where { }0,1   1,...,n n Nω ∈ ∀ = , and 
1

N

nn
Mω

=
=∑ is the indicator describing which of 

the N observations is viewed as a typical sample, so that nx is detected as an outlier 

when 0nω = , and 1nω = for a typical sample, which contributes to the log-likelihood 

function. M is the trimming parameter indicating the removal of (N-M) samples which 
cannot be fitted well by any component of the mixtures, and MTL degenerates to ML 
when N=M. 

The FAST-TLE algorithm was proposed in [19] to get an approximation of TLE 
solution for generalized linear models (GLMs), and was extended for robust fitting of 
mixture model in [18]. The FAST-TLE algorithm consists of two steps called the trial 
step and a refinement step. However, this algorithm is a local method, and therefore 
may get trapped in local optima resulting in a poor estimation. 

2.2 Deterministic Annealing Outlier Detection 

To avoid the local optima problem with FAST-TLE, we resort the deterministic 
annealing (DA) approach in which the optimization problem is reformulated as that of 
seeking the probability distribution that minimizes the application-specific cost 
subject to a constraint of randomness of the solution. During the annealing process, 
the algorithm tracks the minimum while the temperature is gradually lowered so that 
many shallow local optima can be avoid, and finally achieves the hard (nonrandom) 
solution as the temperature approaches to zero [20], [21]. 

In the light of TLE and DA algorithm, we consider the following objective 
function: 
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where T is the Lagrange multiplier, which is analogous to the temperature in statistics 
physics, Hω is the Shannon entropy, which represents a specified  level of 

randomness.  At high value of T, the objective function is very smooth and we 

mainly maximize the entropy, with
1

N

nn
Mω

=
=∑ , yielding /n M Nω = , i.e., each 

samples is equally treated, and the MTL is therefore equivalent to ML. Hence, we 
have 
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As T is gradually lowered, the influence of log-likelihood function is increasing, 
which makes the solution of nω harder and harder. Finally, as T approaches to zero, 

the optimization is carried out directly on the trimmed log-likelihood function, 
forcing nω to either zero or one, which yields the MTL 
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The motivation of the DA based learning procedure is that there is no guarantee that 
the selected subset in the early stage of learning is near the true one. Therefore, all of 
the samples should be equally treated at early stage, and the constraint is gradually 
relaxed during the learning process to increase the effect of the selection of subset, so 
that the global (at least a better local) optimal solution could be achieved. 

For GMMs, to maximize (4), given the fixed { },nω we have 
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It can be observed from (8) that the larger the value of nω is, the more the 

corresponding sample contributes to the estimation of the parameters. As T 
approaches to zero, nω skews either to one or zero, indicating whether the sample is 

viewed as typical or eliminated as an outlier. 
For the parameters{ }nω , we minimize the following objective function  
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This bound-constrained convex optimization can be solved by cvx, a Matlab package 
for solving convex program [22]. 

A description of the proposed algorithm for GMMs is summarized in Fig. 1.  
 

Algorithm: Deterministic Annealing Based Approach for Outlier Detection 
Input: Data Matrix 1{ ,..., }N=X x x , scaling factor α, Tmax, and Tmin 

Output: Optimal mixture model Θ , and outlier indicators { }nω  

Procedure:  
Initialize the parameter set of the mixture models ,Θ the indicator /n M Nω = , 

and minimum temperature Tmin,. Set T = Tmax, t = 0. 
Repeat 

Repeat 
t = t+1 
E-Step: 

              Calculate ( )| np k x according (9) 

M-Step: 

Update{ }kπ ,{ }kμ , and{ }kΣ  according to (8) 

Update{ }nω
 

Until a stop criterion is met. 

T = αT (0 < α < 1). 

Until T < Tmin, 
Return the model parameter setΘ and { }nω  

Fig. 1. Deterministic Annealing Based Approach for Outlier Detection 
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In the proposed algorithm, Tmax is set to 100, and Tmin is set in the range of [0.005 
0.01]. The choice of scaling factor α involves a tradeoff between execution time and 
the risk of poorer performance. In practical application, α ∊ [0.8 0.9] can achieve 
satisfactory results. 

The stop criterion can be a maximum number of EM cycles or a convergent 
indicator. In general, if the algorithm is executed until convergence or the maximum 
number is set to a large value, the computation time is longer, and the algorithm may 
get trapped in local minima in the early stage of learning. Therefore, the criterion is 
set to be execution of 10 to 20 EM cycles at each temperature in our experiment. 

In summary, the learning process consists of repeated E-step and modified M-step 
while gradually lowering the temperature, and its monotonicity in objective function 
is obvious. When the temperature approaches to zero, the method degenerates to 
FAST-TLE algorithm, of which the monotonicity has been proved in [19]. The 
convergence property of deterministic annealing has also been discussed in [21], [23]. 

3 Experiments 

3.1 Synthetic Data Sets 

The first example is a synthetic dataset which consists of 100 samples from three 
Gaussian components with equal mixing coefficients, and the parameter set of each 
component is given by 

1 [0,  3]T=μ , 2 [3,  0]T=μ , 3 [ 3,  0]T= −μ  

1

2 0.5

0.5 0.5

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Σ   , 2

1 0

0 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Σ , 3

2 0.5

0.5 0.5

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Σ  

In addition, 50 noise points generated from a uniform distribution within [-10, 10] on 
each dimension are added to the typical samples, which is similar to the data set 
discussed in [1], [15], [18]. Thus, the total number of samples N = 150, and the 
number of typical samples M = 100. The obtained samples, as well as the Gaussian 
components are shown in Fig. 2(a). The typical samples are marked by magenta dots, 
whereas the outliers are marked by cyan crosses. On the other hand, the colors of the 
observations also indicate the values of weights [ ]0,1nω ∈ which are represented by 

cyan when 0nω =  and by magenta when 1nω = . The colors of samples vary 

smoothly from cyan to magenta as the values of { }nω approach from zero to one.  

Fig. 2(b)-(f) demonstrate the learning process of proposed deterministic annealing 
based outlier detection method (we refer it as “DAOD” here). At the beginning, three 
components are randomly initialized among the samples, and the values { }nω at high 

temperature are almost same. As T is lowered, the components converge to the true 
model, and the atypical observations are gradually detected and eliminated (depicted 
by the smooth varying of the colors from purple to cyan). Fig. 2(e) also shows the 
result of conventional EM, which is marked by dashed line. It can be observed that it 
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fails to fit the samples due to the existing of outliers. The proposed method is also 
tested with different levels of trimming (1- M/N = 0.25, 0.35, 0.45), which is 
presented in Fig. 2(f). We can observe that the proposed method can still identify the 
clusters with higher or lower trimming level, which indicate that our algorithm is also 
robust to the trimming percentage. In other words, even when the prior knowledge of 
noise level is not consistent with the true one, our method can still give reasonable 
results which fit the samples appropriately.  

 

 

Fig. 2. Fitting Gaussian mixtures with noise: (a) the true model shown by dashed line; (b)-(d) 
the learning process of DAOD; (e) the results of DAOD (solid line) and the conventional EM 
algorithm; (f) final estimates with different trimming levels 

The second example is a more complicated one since it has more components and a 
higher degree of overlap than the first one. This data set consists of 1000 samples 
from a mixture of eight two-dimensional Gaussian components with equal mixing 
coefficients (see also [29]), to which 250 outliers are added from a uniform 
distribution within [-3, 3] on each dimension, and the parameter set of each 
component is given by 

1 [1.5,  0]T=μ 2 [1,  1]T=μ 3 [0,  1.5]T=μ 4 [ 1,  1]T= −μ  

5 [ 1.5,  0]T= −μ 6 [ 1,  1]T= − −μ 7 [0,  1.5]T= −μ 8 [1,  1]T= −μ  

and 
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Fig. 3 illustrates the data set, the results obtained by conventional EM, as well as 
DAOD with different trimming percentages. Again, it can be observed that the 
conventional EM cannot fit the typical observations correctly since the outliers are 
fitted by some components whereas some samples generated by more than one 
component are fitted by a single Gaussian. On the contrary, the results of our robust 
algorithm with different trimming percentages in Fig 3(c) indicate that our robust 
algorithm can locate the components correctly. The change of the trimming level only 
affects the estimation of covariances. 
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                 (a)                               (b)                              (c) 

Fig. 3. Fitting an eight-components Gaussian mixture with noise (the typical samples are 
marked by dots, and the outliers are marked by crosses): (a) the true model presented by dashed 
line; (b) result of the conventional EM; (c) final estimates of DAOD with different trimming 
levels 

To further evaluate and compare the performances of conventional EM algorithm, 
FAST-TLE and DAOD, we repeat the second example with different noise levels, and 
then compare their classification accuracies. To check the dependence of the 
algorithms on the initial conditions, we repeat the experiments 50 times for each noise 
level. In unsupervised learning scenario, labels of samples are not needed, and the 
classification accuracies are evaluated as below. After fitting mixtures, the samples 
are first partitioned into different clusters according their posterior probabilities to 
each component. Since the true label of each sample is known in prior, the label of 
each estimated cluster is assigned as the label that most samples in this cluster have. 
Then the sample of which the label does not agree with the cluster label is considered 
as misclassified, and therefore the classification accuracy can be calculated. Fig. 4 
demonstrates the classification accuracies of different algorithms. Notice that the all 
of the algorithms have high accuracies when there is no outlier. The conventional EM 
algorithm is very sensitive to outliers. Both FAST-TLE and DAOD perform well 
when the noise level is not high. However, as the number of outliers increases, 
performance of FAST-TLE degrades significantly. One the other hand, DAOD can 
mitigate the local optima problem with FAST-TLE and therefore is more robust than 
the other methods. 
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Fig. 4. Classification accuracies of various algorithms as a function number of outliers (the 
number of typical samples = 1000) 

3.2 Real World Data Sets 

We now consider the classification task for two real world data sets, i.e., Iris data set 
and waveform data set, which are all available from the UCI machine learning 
repository [24]. The Iris data set contains 150 four-dimensional samples from three 
classes, with each class consists of 50 samples. The waveform data set contains 5000 
instances of three classes of waves, and each sample consists of 40 attributes. 
Therefore, we use three Gaussian components to fit each data set. The label for each 
component is set to dominant label of the samples, and each sample is classified 
according to its corresponding posterior probability. 

The average classification accuracies and the standard deviations over 50 runs are 
demonstrated in Table I, from which it can be observed that the classification accuracy 
can be improved by DAOD with different trimming levels. In summary, the 
performance of conventional EM algorithm can be improved by gradually pruning off 
some samples which are located at the boundary of the components, so that the 
estimates will be more robust and reliable. 

Table 1. Classification Accuracy (%) for Two Data Sets with Different Trimming Levels 

Data Set 

Proposed Robust Approach 

(with different trimming levels) Conventional EM 

0.03 0.05 0.1 

Iris 94.03±4.92 95.52±2.74 94.10±4.38 93.21±4.66 

Waveform 81.66±0.49 81.47±0.46 80.74±0.50 79.46±0.48 
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4 EEG Data Set 

Finally, the proposed approach is evaluated on a more realistic application – the 
classification task of EEG signals. We applied our algorithm to the data set IIa from 
BCI competition IV [25], which consists of EEG data sets from 9 subjects. For each 
subject, two sessions were recorded, each of which consists of 288 trials with duration 
of 7s. In addition, the data set for each subject also contains some rejected trials, which 
are contaminated by noise or artifacts. For detailed description of this data set, see [25]. 
Before feature extraction, the EEG signals are filtered by 8-30Hz band pass filter. Then 
we applied common spatial pattern (CSP), a discriminative approach decomposing the 
signals into spatial patterns, to extract the features from multichannel EEG signals, and 
three Gaussian components are used for each class. Since the CSP is a data-driven 
feature extraction approach, after the elimination of noise samples, we re-train the CSP 
and GMM classifiers.  

Fig.5 illustrates the average classification accuracies of the EEG signals of  
nine subjects obtained by conventional EM algorithm and the proposed robust 
approach with different trimming levels. The classification accuracy of the EM 
algorithm is not improved significantly for the original EEG data (solid line). 
However, when the signals are contaminated by the noise samples (rejected trials), the 
performance of conventional EM algorithm deteriorates obviously, whereas our 
proposed approach can detect and eliminate the outliers, so that more robust and 
reliable results (dashed line) can be obtained. We further investigate the performances 
of DAOD for each subject. On a whole, seven out of nine subjects benefit from 
DAOD. In addition, for the subjects with high classification accuracies (>80%, with 
fewer noise samples), the improvements are not remarkable (<2%); for the subjects 
with lower accuracies (<80%, with more noise samples), however, the classification 
accuracies of four out five subjects are improved significantly (>5%). Therefore, the 
proposed algorithm can successfully reduce the negative effects of EEG signals 
contaminated by artifacts and noise.  
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Fig. 5. The Comparison of the classification accuracies for the EEG data sets with and without 
rejected trials 
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5 Conclusion 

In this paper, we proposed a DA based EM algorithm to detect outliers for mixture 
models. The experiments demonstrate that the performances of conventional learning 
approaches are significantly deteriorated due to the outliers while our method can 
successfully alleviate the negative effects of outliers. In addition, the proposed 
method can automatically prune off the EEG signals contaminated by artifacts and 
noise without any additional channel rejection operation (i.e., independent component 
analysis) or visual inspection of an expert. Since the noise is ubiquitous in EEG 
signals, it is necessary to prune off a small account of samples to achieve reliable 
result even though the noise level is unknown.  

The future work will focus on the reduction on the dependence on the prior 
knowledge of the trimming level. It should be noted that although our method is 
applied to Gaussian mixtures, it can be extended to non-Gaussian cases, which will be 
also considered in the future work.  
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