26.9 A 0.038mm² SAW-less Multiband Transceiver Using an N-Path SC Gain Loop

Gengzhen Qi¹, Pui-In Mak¹, Rui P. Martins^{1,2}

¹University of Macau, Macau, China, ²Instituto Superior Tecnico, Lisbon, Portugal

N-path filtering has been intensely rekindled as a replacement of costly SAW filters, making possible of multiband blocker-tolerant receivers (RXs) at small area and power, e.g., [1]. This paper proposes an *N-Path Switched-Capacitor (SC) Gain Loop* that is reconfigurable as an RF-tunable transmitter (TX) or RX with LO-defined center frequency. Comparatively, a SAW-less RX should be able to amplify a weak in-band (IB) signal in the presence of large out-of-band (OB) blockers, whereas a SAW-less TX should be able to deliver a large IB signal with low spectral leakage and OB noise. Such discrepancy inspires exploration of an *RX-TX-compatible N-path technique* to realize a multiband transceiver (TXR) with zero on-chip inductors and external matching components. Our TXR aims at the multiband LTE standard, and comparable performances are achieved at a die size 24x smaller than the recent art [2, 3].

The proposed *SC-Gain Loop* (Fig. 26.9.1a) is a negative-gain stage with an SC network as its feedback. Any signals, RF or BB, properly injected into the loop will undergo *gain, downmix* and *upmix*, all are primary functions of TX or RX. Thus, the SC-gain loop can operate as a basic TX by injecting the BB signal while extracting the RF signal (Fig. 26.9.1b), or a basic RX by injecting the RF signal while extracting the BB signal (Fig. 26.9.1c). This duality suggests the possibility of using the SC-gain loop as a reconfigurable TXR appropriate for LTE-TDD. Elegantly, the extra downmix path in the TX and upmix path in the RX allow the SC-gain loop to effectively combine with the *gain-boosted N-path technique* [4] to realize LO-defined high-Q bandpass (de)modulation, as described next.

To interface with the typical 4-phase BB signals (I/Q and differential) for quadrature modulation, a 4-path SC-gain loop can become a practical TX (Fig. 26.9.2). $V_{BB,TX1-4}$ are injected via passive-RC filters (R_{BT} and C_{BT}) that also suppress the OB noise of the BB sources (e.g., DACs). As the N-path filter (C_F and SW_{L-R}) is created around the gain stage (G_{mRF}), high-Q bandpass filtering is created at both V_{LTX} and $V_{o,TX}$ [4]. The loop gain offered by G_{mRF} reduces the required size of C_F (8pF) thanks to the Miller multiplication effect, and decouples the size of SW_{L,R} to the OB rejection (i.e., smaller LO power).

Unlike the RX-only N-path solution in [1] that benefits from a large G_{mRF} (200mS) to improve the NF and OB linearity, the concerns of spectral regrowth and EVM for our TX mode restrict the extent of $G_{m,RF}$ (130mS). Also, in order to decouple the signal-handling ability of $G_{m,RF}$ to the overall TX output power, $V_{o,TX}$ is further amplified by a high-input-impedance PA driver (PAD) before driving the off-chip 50 Ω load. The single-ended push-pull PAD is power efficient and offers a wide 1dB output bandwidth (~2.1GHz) adequate to cover >80% of the LTE bands from 0.7 to 2GHz. From pnoise simulations, the PAD contributes only 10% of the total OB noise (-157.7dBm/Hz) at 80MHz offset, which is indeed dominated by R_{BT} (24%), $G_{m,RF}$ (20%) and $SW_{L,R}$ + LO div-by-4 (20%). The rest comes from the 50 Ω load and switches SW_{TX^-RX} for TX-RX mode control.

When the extra downmix path in Fig. 26.9.2 is omitted, our closed-loop TX returns to an open-loop style similar to [5] that aims at low OB noise emission by direct quadrature-voltage modulation. The key difference here is that the gain created by G_{mRF} is recycled to boost the Q of the bandpass responses at $V_{i,TX}$ and $V_{o,TX}$ as compared in Fig. 26.9.3a, rejecting the OB noise effectively.

The size of R_{BT} plays a key role in balancing the overall performance. As any resistors added to the N-path SC-gain loop can degrade the Q at V_{I,TX} and V_{o,TX}, a large R_{BT} benefits the OB rejection but at the expense of certain passband gain due to the finite input impedance at V_{I,TX} (Fig. 29.6.3b). In fact, as R_{BT} incurs noise as well, the rejection of OB noise will eventually saturate when enlarging only R_{BT} (Fig. 29.6.3c). For the spectrum purity, V_{o,TX} contains typical LO harmonic emission with HRR₃=9.5dB for N=4. Nevertheless, with the limited bandwidth of the PAD and output pad (bondwire), the HRR₃ at the TX output V_{RF,TX} is improved (Fig. 29.6.3d), and goes up with frequency (e.g., 23dB at 2GH2). The HD₂ at V_{RF,TX} is dominated by the single-ended PAD, and it is <-37dBc at a 0dBm output in simulations (Fig. 26.9.3d), by properly matching the PAD's push-pull transistors. Note that the commercial high-power LTE PA (e.g., [6]) is narrowband and will

suppress all OB harmonics from its TX. Thus, the final spectrum should still be dominated by the PA harmonic distortion [6].

The 4-path SC-gain loop can embody as a multiband RX for differential I/Q demodulation using no off-chip matching (Fig. 29.6.4). The source port is injected at V_{i,RX}, where a bandpass input impedance is created by frequency-translating the BB lowpass response (~10MHz, defined by R_{BR}C_{BR}) to RF as bandpass, via the passive mixer SW_L. Note that SW_L + C_F already embed the downmix function saving one side of mixers [1]. Thanks to the loop gain created by G_{mRF}, the BB circuitry sees a higher impedance back to the source port, allowing large R_{BR} (21kΩ) and small C_{BR} (1pF) to reduce the die area. Additionally, as R_F is no longer handicapped by the input-impedance matching, a large R_F (9.3kΩ) concurrently benefits the RF-to-BB gain, NF and OB rejection.

For the BB extraction, unlike [1] that uses resistors, here switches SW_B are employed (Fig. 29.6.4). SW_B and SW_L share the same set of 25%-duty-cycle LO, but are out-phased with each other. This undertaking obviates the BB noise from leaking directly to the source port, resulting in >1dB better simulated NF at 2GHz when comparing with [1].

The TXR fabricated in 65nm CMOS has a die area of 0.038mm² dominated by the capacitors (48pF) and PAD. The RF-input bandwidth is set at 10MHz to support the LTE10, and is adjustable via R_{BT} (Fig. 29.6.3b). Both G_{mRF} and G_{mBB} are inverter-based amplifiers to enhance the g_m/current efficiency. The LO generator is a div-by-4 measuring an average power efficiency of 6.6mW/GHz. At 2GHz, its simulated phase noise is -159.8dBc/Hz at 80MHz offset.

For the TX mode, the P_{out} shows -1dBm at 1.88GHz (Band2) after de-embedding the cable and PCB loss. The ACLR₁ (ACLR₂) is -40dBc (-51.9dBc) (Fig. 29.6.5a) and EVM is 2.0%. The output noise floor is -154.5dBc/Hz at 80MHz offset and CIM₃ is -52dBc. The results are similar at 0.836GHz (Band5) and are summarized in Fig. 29.6.6. High-Q bandpass characteristics are consistently measured at different RF, by simply sweeping the LO frequency (Fig. 29.6.5b). The TX-mode consumes 31.3mW (Band5) to 38.4mW (Band2) (Fig. 29.6.5c).

For the RX mode, the S₁₁ is <-12dB. The NF is 2.2dB at Band5, and up to 3.2dB at Band2 limited by the bondwire effects. Unlike [1] that targets a narrow RF BW (2.7MHz), here the RF BW is much wider (10MHz) and therefore the achieved OB-P_{1dB} (-5dBm) and OB-IIP3 (+8dBm) are both competitive at 80MHz offset. The OdBm-blocker NF is 16dB at 80MHz offset.

Benchmarking with the recent LTE TXs [2,3], our TRX in TX mode succeeds in creating multiband flexibility, while achieving a comparable TX efficiency at a much smaller die size. For our TRX in RX mode, similar NF and die size are achieved when comparing with [1], while this work operates at 1.25x higher RF and entails only a single supply (Fig. 29.6.7).

Acknowledgements:

The authors thank Macao FDCT and UM–MYRG2015-00040-FST for financial support and Dr. Zhicheng Lin for discussion on the receiver mode.

References:

[1] Z. Lin, P.-I. Mak and R. P. Martins, "A 0.028mm² 11mW single-mixing blockertolerant receiver with double-RF N-path filtering, S_{11} centering, +13dBm OB-IIP3 and 1.5-to-2.9dB NF," *ISSCC Dig. Tech. Papers*, pp. 36-37, Feb. 2015.

[2] Y.-H. Chen, N. Fong, B. Xu and C. Wang, "An LTE SAW-less Transmitter Using 33% Duty-Cycle LO Signals for Harmonic Suppression," *ISSCC Dig. Tech. Papers*, pp. 172-173, Feb. 2015.

[3] N. Codega, P. Rossi, A. Pirola, A. Liscidini and R. Castello, "A current-mode, low out-of-band noise LTE transmitter with a class-A/B power mixer," *IEEE J. Solid-State Circuits*, vol. 49, pp. 1627-1638, July 2014.

[4] Z. Lin, P.-I. Mak and R. P. Martins, "A 0.5V 1.15mW 0.2mm² sub-GHz ZigBee receiver supporting 433/860/915/960MHz ISM bands with zero external components," *ISSCC Dig. Tech. Papers*, pp. 164-165, Feb. 2014.

[5] X. He and J. van Sinderen, "A 45nm low-power SAW-Less WCDMA transmit modulator using direct quadrature voltage modulation," *ISSCC Dig. Tech. Papers*, pp. 120-121, Feb. 2009.

[6] Anadigics LTE Power Amplifier (AWT6652).

Figure 26.9.5: a) Measured TX output spectrum for the LTE Band2 (1.88GHz); b) Bandpass responses centered at different LOs. c) Power breakdown at different RF frequencies.

* Measured with 50/20 Resource Block; b Without DAC, Biquad and 2 baluns given in [2] pp. 1636, Table 1 Figure 26.9.6: Measured TX-mode performance comparison. 26

ISSCC 2016 PAPER CONTINUATIONS

CBT GmRF LO Gen		This Work – RX-Mode	ISSCC'15 [1]
SWLR GmB	RX Architecture and Key	Gain-Boosted-Mixer- First + N-Path Filtering +	Gain-Boosted-Mixer- First + N-Path Filtering +
CBR	Techniques	Switched-BB Extraction	Resistive-BB Extraction
PAD TX-Mode	External	Zero	Zero
	Supply (V)	1	0.7, 1.2
0.24 mm	Power (mW) @ RF (GHz)	20 @ 1.88	11@1.5
Reconfigurable	DSB NF (dB)	3.2 @ 1.88	2.9 @ 1.5
TXR 5	0-dBm Blocker NF (dB)	16 @ 80 MHz offset (RF BW = 10 MHz)	13.5 @ 80 MHz offset (RF BW = 2.7 MHz)
	OB-P _{1dB} (dBm)	-5 @ 80 MHz offset	-6 @ 80 MHz offset
	OB-IIP3 (dBm)	+8	(RF BW = 2.7 MHZ) +13
CBT GmRF LO Gen	OB-IIP2 (dBm)	+48	+50
Cr GmB	BB BW (MHz)	~9	2
CBR	BB Filtering	1 Real Pole	1 Real Pole
PAD RX-Mode	Volt. Gain (dB) Technology (nm)	36 65	38 65
aure 26.9.7: TXR die mi	icrooraph and i	ts RX-mode perforr	nance comparison.