
  

  

Abstract—Due to the artifacts in electroencephalography 
(EEG) data, the performance of brain-computer interface (BCI) 
is degraded. On the other hand, in the motor imagery based BCI 
system, EEG signals are usually contaminated by the misleading 
trials caused by improper imagination of a movement. In this 
paper, we present a novel algorithm to detect the abnormal 
EEG data using genetic algorithm (GA). After trial pruning, a 
subset of the EEG data are selected, on which common spatial 
pattern (CSP) and Gaussian classifier are trained. The 
performance of the proposed method is tested on Data set IIa of 
BCI Competition IV, and the simulation result demonstrates a 
significant improvement for six out of nine subjects.  

I. INTRODUCTION 
HE brain-computer interface (BCI) is a system that forms 
a possible control and comunication channel for the 

individuals with severe motor disabilities to have effective 
control over external devices without using  the traditional 
pathways such as peripheral muscle or nerves [1–3]. At 
present, the brain activities are often recorded noninvasively 
by the electroencephalogram (EEG), which has excellent 
temporal resolution and usability, and the EEG signal is 
therefore a popular choice for BCI research. 

In order to control an EEG-based BCI, the user must 
produce different brain activity patterns, which are recorded 
by electrodes on the scalp, and then features are extracted 
from the EEG signals and translated into the control 
commands by classification algorithms. For a review on the 
feature extraction and classification technologies used in 
BCIs see [3–6]. 

Noise is ubiquitous in EEG signals due to the factors such 
as measurement inaccuracies, physiological variations in 
background EEG, muscle and eyes blink artifacts. On the 
other hand, for a motor imagery based BCI, the noise can also 
be induced by improper imagination of a movement. The 
artifacts can be removed by independent component analysis 
(ICA) [7], [8] or rejected by thresholds or criteria. However, 
the ICA algorithm requires visual inspection to choose the 
artificial components, which makes it unfeasible to be applied 
in an automated BCI system. Furthermore, both of the 
methods cannot detect the noise caused by improper 
imagination trials since they do not take the label information 
into account [9]. 

The performances of the classification and data-driven 
feature extraction methods (e.g., common spatial pattern 
(CSP) [10]) could be degraded due to the trials contaminated 
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by noise. A trial pruning method based on relevant 
dimensionality estimation (RDE) was proposed in [9] which 
only handled the noise caused by the imagination improperly 
carried out or even related to wrong class. 

In this paper, a novel trial pruning method based on genetic 
algorithm (GA) is presented to simultaneously remove the 
trials contaminated by physiological noise (e.g., artifacts) and 
subjects’ failure to carry out mental task. The CSP and 
Gaussian classifier are performed on a “pruned” subset so that 
more robust and reliable estimation can be achieved. The 
performance of the proposed method is tested on Data set IIa 
of BCI Competition IV, and the simulation result 
demonstrates a significant improvement, especially for the 
trials contaminated by noise. 

II. METHODS 
Our method is proposed based on the combination of 

CSP-Gaussian classifier couple and GA. In particular, the 
CSP is trained on a subset of the EEG data and projects the 
EEG signals to the feature space. Then the mean and 
covariance of each class are estimated and the likelihood 
functions of the feature vectors are calculated. In the GA step, 
the chromosomes are updated according to the likelihood 
contribution for the current estimated model. Each pair of the 
chromosome and the corresponding mixture model will be a 
possible solution. The two steps are performed alternately 
until the stop criteria are met or the maximum number of 
generation is achieved. The flowchart of the genetic-based 
trial pruning method is shown in Fig. 1. 

A. Common Spatial Pattern (CSP) 
CSP is a discriminative algorithm designed based on a 

decomposition of the raw EEG signals into spatial patterns so 
that the variances of the resulting signals carry the most 
discriminative information. 

Let C C+ ×∑ ∈ and C C− ×∑ ∈ (where C is the number of 
the channels) be the estimated covariance matrices of two 
classes EEG signals (e.g., motor imagery of two different 
hands in this paper), then the CSP components can be 
calculated by a simultaneous diagonalization of the two 
covariance matrices so that the sum of the two diagonalized 
matrices is the unit matrix: 

TW W+ +∑ = Λ  
                    TW W− −∑ = Λ                              (1) 

I+ −Λ + Λ =  
Since 1j jλ λ+ −+ = (j = 1,…,C), if a spatial filter jw yields a 
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large value of jλ+ in one class, it will project the other class 

with low eigenvalue jλ− . As the eigenvalues represent the 
variance of each class, the resulting EEG signals filtered by 

jw will maximally separable by their variance. For 
classification the features of single-trials are chosen as the 
log-variance of the CSP filtered signals. For more detailed 
and comprehensive accounts on CSP see [10]. 

B. Gaussian Classifier 
After feature extraction, we use the Gaussian classifier, 

which is based on Bayes’ decision theory, to assign data x to 
class i, if  

( ) arg max | ii
i p ω= x  
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where iu and i∑ are the mean and covariance of class i 
respectively, d is the dimension of the feature vectors, and iD  
is the Mahalanobis distance between the data x and iu . Here 
we have assumed that each class has the same prior 
probability ( )ip ω . The iu and i∑ are estimated by maximum 
likelihood estimation: 
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where Ni is the number of training samples of class i. 

The reason we choose Gaussian classifier is twofold. First 
the variance features are approximately chi-square distributed, 
and therefore the log-variance features are similar to normal 
distribution [11], [12]. On the other hand, the Gaussian 
classifier can naturally produce probabilistic outputs, which 
are utilized as a part of objective function in the GA step. 

C. Genetic-Based Trial Pruning 
As discussed above, the EEG data can be contaminated by 

physiological variations, artifacts, or improper imagination of 
the movements. Hence, training on a “cleaned” subset which 
contains the reliable class information can achieve a more 
robust estimation. 

In general, the trials to be pruned are divided into two 
categories. The first one is the outliers, which are far from the 
whole data set in the feature space. This type of trials can be 
regarded as task-irrelated noisy trials, since the main reason 
of this type of trials is the background EEG noise or artifacts, 
and usually not related to the motor imagery task. Even 
though sometimes they are classified correctly, they may pull 
the class mean and covariance, or the decision boundary 
towards their location, which can affect the generalization 
performance. The second category is the trials which are 
misclassified, of which the presence is mainly caused by the 
subject’s failure to carry out mental task, and these trials can 
be viewed as task-related noisy trials. 

To achieve a more robust analysis result, the trials 
contaminated by both types of the noise should be handled 
carefully. From the statistical point of view, the outliers are 
the samples with (unnormalized) low class conditional 
probability density ( )| ip ωx for both classes, and the 

misclassified samples have higher ( )| ip ωx for the opposite 
class than the class they are assigned to. Therefore the 
information of labels and class conditional probabilities can 
be taken into account to detect and prune noisy trials. 

In this paper, the subset is selected by genetic algorithm 
(GA). The purpose of integrating GA into CSP-Gaussian 
classifier couple is to take advantage of the search capability 
of GA. N-bit binary vectors are first randomly initialized, 
where the N is the number of training samples. Each bit 
indicated whether the sample x is pruned or not. Only the 
samples survived (the corresponding bit is 1) can contribute 
to the training of CSP-Gaussian classifier couples. The 
chromosomes are updated according to their fitness score. 

To utilize the information of label and class conditional 
probability density of each sample, guided mutation [13] is 
adopted instead of basic mutation during the update 
procedure. In particular, the bits corresponding to the samples 
with low ( )| ip ωx for both classes or the misclassified 
samples with high class conditional probability density 
difference values are set to be zero, while the samples with 
high ( )| ip ωx and correctly classified with high confidence 
are set to be one. The trials with low conditional probability 
density can be regarded as the outliers caused by 
physiological noise such as artifacts (type I noisy trials), 

 
Fig. 1.  Flowchart of genetic-based trial pruning method. 
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while the misclassified trials can be viewed as improper 
imagination trials (type II noisy trials). Fig.2 demonstrates the 
flowchart of the guided mutation.  

The fitness for the samples is defined as the sum of the 
difference of the posterior probabilities for each class, which 
is equal to difference of the normalized class conditional 
probability density in our case. For the samples which are 
labeled to the first class, the corresponding individual fitness 
should be ( ) ( )( ) ( ) ( )( )1 2 1 2| | | |p p p pω ω ω ω− +x x x x , and 

( ) ( )( ) ( ) ( )( )2 1 1 2| | | |p p p pω ω ω ω− +x x x x for the samples 

labeled to second class. Thus, the fitness of the misclassified 
sample is negative and the best individual is the one which 
maximize the fitness function. The reason we choose the 
difference of the posterior instead of classification accuracy is 
that this fitness function takes into account not only the label 
information but also the probabilistic information indicating 
how well the samples are distributed in the feature space. It 
should be noted that in each iteration step only the selected 
samples contribute the fitness. 

III. EXPERIMENTS 

A. Data Set 
The performance of the proposed method is evaluated on 

the data set IIa from BCI competition IV [14], provided by 
Graz University of Technology. The data set consists of EEG 
data from 9 subjects who performed the imagination of left 
hand, right hand, both feet, and tongue. Two sessions on 
different days were recorded for each subject. Each session is 
comprised of 6 runs separated by short breaks. One run 
consists of 48 trials with duration of 7s, yielding a total of 288 
trials per session. For detailed description of this data set, see 
[15]. In this study, only two classes, namely the EEG signals 
of left hand and right hand motor imagery are used. In 

addition, instead of providing continuous classification 
output for each sample, we only consider the discrete 
classification for each trial. 

B. Parameter Setting 
Some parameters for the proposed algorithms should be set 

carefully. Specifically, we choose the time segment from 2.5s 
to 4.5s of each trial as the training data, which was also 
adopted by the winner of the BCI competition. Before feature 
extraction, the EEG signals are filtered by 8-30Hz band pass 
filter. 

The features of the EEG signals are extracted by CSP. 
Since the total number of parameters of the Gaussian model 
for each class is D×(D+1)/ 2+D, where D is the dimension of 
the feature space, to avoid the overfitting we only choose the 
first pair of the spatial filters to extract the features (D=2). 

The parameters for the proposed genetic-based method are 
selected by experience. In particular, the number of the 
individuals is 20, and the generation number is 30. Roulette 
wheel rank weighting and single-point crossover are used for 
crossover operation. For guided mutation, the pruning 
number M1 and M2 are set to be 5% of the number of the total 
samples and 10% of the number of misclassified samples of 
each iteration, since if the pruning level is high, it may lead to 
overfitting and break the convergence of GA. 

C. Results 
The performances of the proposed method based on trial 

pruning and the classical CSP-Gaussian classifier couple 
trained on whole data set are demonstrated in Table 1. We 
also compare the different pruning strategy, i.e. pruning the 
outliers (type I noisy trials) only (M2 = 0) and pruning 
improper imagination trials (type II noisy trials) only (M1= 0) 
respectively. The best accuracy for each subject is shown in 
bold type. 

It can be observed that for the proposed method, the 
performances are improved for most of the subjects (six out 
of nine), and the classification accuracies of only two subjects 
slightly decrease. Besides, for the subjects who perform the 
imagination task well, the improvement is not significant, but 
for the subjects with relative low classification accuracy 
(<90%), the improvement is remarkable (five out of six 
subjects benefit from the proposed method). Therefore, the 
proposed method can provide more robust and reliable 
estimation for the trials contaminated by noise. 

The combination of the type I and type II noisy trial pruning 
provide the best performance for the nine subjects, while each 
of the single pruning method cannot improve the overall 
classification accuracies significantly, especially for the 
method only pruning the type II noisy trials.  One possible 
reason is that the outliers can change the distribution of the 
data which can be eliminated by the proposed method, while 
the type II noisy trials may be caused by the intrinsic factors 
such as subject’s failure to perform the imagination or 
inseparability of the extracted feature. Thus, the pruning 
strategy is an efficient method of automatic detection of the 
outliers. For the type II noisy trials, tuning the preprocessing 
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     Fig. 2.  Flowchart of guided mutation 
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parameters such as training time segment, frequency band of 
the temporal filter may improve the performance, and the 
proposed method can also alleviate the negative effect of the 
misclassified samples. 

To further validate the robustness of the proposed method, 
we add ten rejected trials containing artifacts in each subject’s 
training set and assign their labels randomly. Table II shows 
the performances of the methods for different data set, where 
data set I is the normal set, and data set II is the training set 
containing rejected trials. It can be observed that the 
performance of the estimation on the pruned subset only 
slightly degrades, much better than the classical one. Since 
the proposed method can automatically detect the noisy 
samples, especially the trials containing artifacts, it is more 
robust and reliable than the classical method.  

IV. CONCLUSIONS 
In this paper, a genetic-based trial pruning method is 

proposed to improve the performance of EEG classification. 
The motivation of this work is to automatically prune the 
trials contaminated by noisy data caused by artifacts and 
improper motor imagery without any additional channel 
rejection operation (i.e., ICA) or visual inspection of an 
expert. After the trial pruning, the CSP and the classifier are 
trained on a subset and achieves a robust performance. 
Moreover, through the guided mutation, both class 
conditional probabilities and label information are taken into 
account, which can make full use of the information of the 
data distribution. 

The future work will focus on validating the proposed 
method on more data sets. In addition, more effective 
algorithm to handle the type II noisy trials is under 
development. One promising approach is to reweight the 
trials [9], which could be integrated into our method. Besides, 
we are also exploring automated parameter selection 
techniques for the genetic-based method, as well as other 
fitness function which could be more powerful to deal with 
this task. 
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TABLE I 
CLASSIFICATION ACCURACY (%) OF EACH METHOD 

Methods 
Subjects 

S1 S2 S3 S4 S5 S6 S7 S8 S9 
Classical CSP-Gaussian classifier couple 85.42 54.17 92.36 69.44 52.78 62.50 77.08 92.36 90.28 
Method pruning improper imagination trials only (M1 = 0) 85.42 56.25 90.28 64.58 54.86 61.11 72.22 93.75 91.67 
Method pruning outliers only (M2 = 0) 86.11 60.42 91.67 71.53 56.25 63.19 76.39 91.67 89.58 
Proposed trial pruning based methods 88.19 63.19 91.67 73.61 60.42 65.28 75.69 93.75 90.28 

 

TABLE II 
CLASSIFICATION ACCURACY (%) FOR DIFFERENT DATA SETS 

Methods Data set I Data set II 

Classical CSP-Gaussian classifier couple 75.15 68.90 
Proposed trial pruning based methods 78.01 75.62 
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