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Abstract 
 

In this paper, we propose and analyze a new GPS 
positioning algorithm. Our algorithm uses the direct 
linearization technique to reduce the computation time 
overhead. We invoke the general least squares method in order 
to achieve optimality in the situation when the trilateration 
system of equations becomes over-determined. We 
systematically evaluate our new algorithms and show that they 
indeed take much less computation time than the traditional 
GPS method while maintaining reasonable accuracy. 
 
1. Introduction 
 

Global Positioning System (GPS) is a space-based 
system, providing worldwide location and navigation 
services [14] [15]. Though GPS is a huge and 
sophisticated system, its basic idea comes from a 
fundamental mathematical theorem that in a three-
dimensional space we can locate the position of an object 
if we know the coordinates of three other points and their 
distances from the object. Such a method is commonly 
referred to as Trilateration [20]. The nature of 
trilateration is to solve a multivariate quadratic equation 
system. Different methods [2] [11] [22] [23] [26] have 
been proposed to find a solution.  

 
Generally, solutions for the trilateration problem need 

to address two issues: the first is to construct the pseudo-
range equation model. Based on different assumptions or 
conditions, various models can be established. For 
example, in P4P (Pseudo-ranging 4-point Problem) 
model [13], clock bias is treated as an unknown 
parameter. Then, using such a model to solve the 
trilateration problem requires at least four satellites. The 
second issue is how to solve the equation systems built by 
pseudo-range equation models. A typical approach is to 

use the iterative method. Because pseudo-range equation 
models are non-linear, iterative methods are natural 
choices in GPS positioning. However, iterative methods 
have shortages of expensive computational overhead and 
risk of non-convergence.  

 
However, in many application systems, the object to be 

positioned may move at a high speed. It is then necessary 
to reduce the computation time overhead in order to 
provide real-time response for positioning requests.  

 
In this paper, our goal is to develop new GPS 

positioning algorithms that will make a significant 
reduction on computation overhead while maintaining 
comparable positioning accuracy with traditional GPS 
algorithms. In particular, we take a direct linearization 
approach that allows us to remove quadratic items, hence 
forming a linear system. Therefore, our method can 
deliver a closed-form solution. Such a solution obviously 
uses less computation time than traditional iterative 
methods. 

 
We systematically analyze and compare the 

performance of the proposed approach with traditional 
iterative methods with real data sets from several GPS 
stations which are currently in operation. We find that our 
new methods indeed reduce the computation time 
overhead significantly when compared with the traditional 
iterative method. Meanwhile, our methods are able to 
maintain an accuracy level which is sufficiently 
reasonable for practical usage.    

     
The paper is organized as follows: Section 2 discusses 

the previous work; Section 3 models the trilateration 
problem by presenting and analyzing a typical iterative 
method. Section 4 introduces our method in detail. 
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Section 5 shows the experimental results, and Section 6 
provides the final remarks.   

 
2. Related Work 
 

Fundamentally, solving the GPS positioning problem 
involves two issues: first, to establish a proper pseudo-
range model; second, to choose an optimal or near-
optimal method to solve the model which is typically non-
linear. 

 
For the first issue, various pseudo-range models have 

been developed, based on different assumptions. A 
commonly used model is called P4P (Pseudo-ranging 4-
point Problem) [13]. This model treats the receiver’s 
coordinates and clock bias as four unknown parameters. A 
basic assumption of this model is that GPS receivers use a 
low-cost clock which can not be fully synchronized with 
the standard time.  Previous studies reported in [1], [2], 
[4], [11], [22], [23] and [26] adopted this kind of model. 

  
When precise clock time can be acquired, only three 

satellites are needed to calculate a position. In [30] an 
investigation is made on the feasibility of using this kind 
of idea to solve the problem. [27] further pointed out that 
precise clock time could bring additional benefits on 
vertical position accuracy. As such, many previous studies 
have considered using the clock bias prediction to provide 
a good estimation on true time [3] [17] [27] [34] [35] 
[36].  

 
Two different methods have been taken to address the 

second issue: direct methods and iterative methods. 
Previous studies on direct solutions included those 
reported in [1] [2] [6] [18] [19] [22] [23]. The iterative 
solutions are covered in [4] [11] [25] [26] [28]. Generally, 
direct methods can obtain closed-form solutions and need 
less execution time. Direct methods can also avoid the 
problems of bad initial guess and non-convergence which 
exist in iterative methods. However, most of the direct 
methods proposed in previous studies have assumed that 
the pseudo-range equation system is deterministic [28]. 
This unrealistic assumption makes most of direct methods 
not practical in real applications [26]. Furthermore, some 
direct methods such as [1] [18] can only work with four 
satellites.  

 
On the contrary, the traditional iterative solution has 

been widely used in current GPS devices. Newton-
Raphson Method (NR for abbreviation) is mostly used in 
practice [11]. Though an iterative method typically 
requires more execution time, it can tolerate measurement 
errors and support the case when there are more than four 

satellites. Bad initial guess and failure to converge may 
pose potential problems for iterative methods.  

 
The method we proposed in this paper is very different 

from aforementioned methods. First, our method treats 
unknown clock bias as a correctable error contained in 
pseudo-range. Second, we provide a direct linearization 
method to convert the pseudo-range equation model to a 
linear one. Then, a closed-form solution can be derived1. 
In the following sections, we will introduce our method in 
detail and analyze and compare it with methods proposed 
in the previous studies. 

 
3. Classic GPS Method 
 
3.1. A Theoretical Model of Trilateration 
 

The Global Positioning System (GPS) is a global 
navigation satellite system consisting of the following 
segments [24]: 

1) The space segment of at least 242 space vehicles 
(i.e., satellites) orbiting in 6 circular orbital planes 
around the earth;  

2) The user segment of unlimited GPS ground 
receiver; and  

3) The control segment of several base stations on 
the earth that are monitoring and maintaining the 
satellites.  

 
The goal of the system is to estimate the locations of 

GPS ground receivers. Without any consideration of 
obstacles, a GPS ground receiver at any point on the earth 
can receive signals from 6 to 10 (or more) different GPS 
satellites based on the RF line-of-sight propagation. The 
positioning process is performed according to the basic 
trilateration method: 

• A receiver obtains a signal from satellite iS , and 
uses the information from the signal to compute 
the distance between itself and iS . Let this 
distance be iρ . Let iS ’s coordinates be ( )iii zyx ,, , 
and the receiver’s location (to be estimated) be 
( )eee zyx ,, , The center of the earth is the origin 
( )0,0,0 . Then, the following distance equation can 
be established: 

                                                 
1 Because GPS positioning depends on measuring travel 
time of signals, it can be seen as a kind of TOA-based 
localization [31] [9] [7] [5]. A similar direct linearization 
method was proposed in [A]. The differences between our 
solution and the method in [A] are clock bias prediction 
model and an optimal algorithm, discussed in Section 4. 
2 In March 2008, there were 31 active satellites. 
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i zzyyxx ρ=−+−+− 222 )()()(  (3-1) 

• By using signals from three different satellites 
(say, 1S , 2S , and 3S ), we will have a system of 
equations as follows: 

1
2

1
2

1
2

1 )()()( ρ=−+−+− eee zzyyxx  (3-2) 

2
2

2
2

2
2

2 )()()( ρ=−+−+− eee zzyyxx  (3-3)  

3
2

3
2

3
2

3 )()()( ρ=−+−+− eee zzyyxx  (3-4) 
 
Solving this system of equations, we can determine 

( )eee zyx ,, , an estimation of the receiver’s location. Note 
that theoretically, solutions for these kinds of equations 
may not be unique, but the physical meaning of the 
equations usually results in only one solution. The 
geometric meaning of the method can be found in [20]. 

 
3.2. An Error Model of Distance Estimation 
 

In the above theoretical model, an implicit assumption 
is made. That is, there is no error in estimating the 
distance between the receiver and a satellite. This 
assumption may not be realistic in the real world. Indeed, 
in reality, the distance estimated can be written in the form 
as follows: 

RS
ii

e
i εερρ ++=   or )( RS

i
e
ii εερρ +−=  (3-5) 

where iρ is the exact distance between the receiver and iS , 
Rε  is the receiver dependent error, and S

iε  is satellite 
dependent error.  
 

Let us use an example to illustrate factors in a real 
system that may contribute to S

iε  and Rε . Let s  be the 
time when the satellite sends a signal and t  be the time 
when the receiver receives the signal. The exact distance 
between satellite i and the receiver is then given by 

a
ii cts )( −=ρ     (3-6) 

where a
ic  is the average speed at which the signal travels 

from iS to the receiver. If the clocks of the satellite and 
the receiver are perfectly synchronized and a

ic is known, 
the above computation would be accurate.  
 

However, in reality, it is not the case. First, it is 
unrealistic to assume that the clock at the receiver can 
precisely synchronize with those of the satellites as it 
would be too costly to realize synchronization at a 
reasonable level of accuracy3. As such, we may have to 

                                                 
3 The satellites usually have an atomic clock that can be 
synchronized up to an accuracy of 10-15 second, sufficient 

use et , the reading of the receiver’s clock at time t , as an 
estimate of t . Let the error of the clock be tΔ . Then, we 
have 

ttt e Δ+=    (3-7) 
 
Second, when the radio signal travels from a satellite to 

the receiver, it passes through different media and hence 
the speed may vary. We would not be able to know the 
accurate average speed at which the signal travels. We 
may estimate a

ic  by using c , the speed when light travels 
in a vacant space. This estimate, of course, will result in 
an error:  

ccc a
ii −=Δ     (3-8) 

 
Now, an estimate of the distance between the satellite 

and the receiver is given by: 
cts ee

i )( −=ρ             (3-9) 
))(( i

a
i cctts Δ−Δ−−=           (3-10)  

i
a
i ctstccts Δ−−Δ−−= )()(     (3-11) 

 
Comparing (3-11) with (3-6), (3-7), and (3-8), the first 

term in (3-11) is iρ , the accurate distance. The second 
term is, Rε , the receiver dependent error, and the third 
term in (3-11) is S

iε , the satellite dependent error. While 
there are other factors that may contribute to the errors, 
this example confirms that (3-6) is a proper model for 
distance estimation and relevant errors.   

 
3.3. Dealing with Clock Dependent Error 
 

If we substitute (3-5) into (3-2), (3-3), and (3-4), then 
the system of three equations has 7 unknown variables, 
namely ( )RSSSeee zyx εεεε ,,,,,, 321 . Clearly, three equations 
are insufficient to solve the system of equations in order to 
determine 7 unknowns. An approach is to use more 
satellites and hence set up more equations.  

 
In the case where there are only clock dependent 

errors, or where satellite dependent errors can be 
compensated, 4 satellites are sufficient. For example, 
Differential GPS (DGPS) technology as described in [24] 
[29] can be used. In this case, we have the following 
system of equations:  

Reeee zzyyxx ερ −=−+−+− 1
2

1
2

1
2

1 )()()(     (3-12) 
Reeee zzyyxx ερ −=−+−+− 2

2
2

2
2

2
2 )()()(     (3-13) 

                                                                               
for the location calculation. Unfortunately, a civil mobile 
device can not afford such an expensive atomic clock.  
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Reeee zzyyxx ερ −=−+−+− 3
2

3
2

3
2

3 )()()(     (3-14) 
Reeee zzyyxx ερ −=−+−+− 4

2
4

2
4

2
4 )()()(     (3-15) 

 
Solving the above system of equations, one may 

determine ( )eee zyx ,, , an estimate of receiver’s location, 

and Rε , the receiver dependent error.  
 
Unfortunately, this approach of using more satellites 

can not be directly generalized into the case when both 
types of errors exist. Consider the following argument: 
substituting (3-5) into (3-1), we have  

RS
i

e
i

e
i

e
i

e
i zzyyxx εερ −−=−+−+− )()()()( 222 (3-16) 

where mi ...,,2,1= and 4≥m . For this system of m  
equations, there will be 13 ++ m unknown variables and 
hence the system of equations cannot be directly solved. A 
much more sophisticated approach must be taken, as we 
will discuss in the next subsection.  

 
3.4. The Newtown-Raphson Method 
 

In this sub-section, we describe that the Newtown-
Raphson (NR) method can deal with the receiver 
dependent error and has been utilized in many GPS 
devices. This method forms a foundation for the 
algorithms we will propose in Section 4. 
 
3.4.1. The Algorithm  
 
As the system of equations in (3-16) is not directly 
solvable, the NR algorithm takes an approximation 
approach by treating S

iε as an error in computation of e
iρ  

and hence assumes that it can be ignored in the solution 
process. Thus, the NR method really solves the following 
system of equations 

Re
ii ερ −≈ℜ      (3-17) 

where 
( )222 )()()( e

i
e

i
e

ii zzyyxx −+−+−=ℜ  (3-18) 
where mi ...,,2,1= and 4≥m .  

 
We need to introduce some notations first. At the k-th 

iteration, let ( )][][][][ ,,, kRkekeke zyx ε  be the values of 

( )Reee zyx ε,,,  and ][k
iℜ be the value of iℜ . Define the 

residual function ( )Reee
i zyxP ε,,,  as follows:  

Re
iiiP ερ +−ℜ=    (3-19) 

 
Define partial derivatives of iP  as follows: 

e
ii xPX ∂∂='    (3-20) 

e
ii yPY ∂∂='   (3-21) 

e
ii zPZ ∂∂='    (3-22) 

R
ii P ε∂∂=Ε'    (3-23) 

 
The algorithm is an iterative one. We define residual 

function at the k-th iteration as follows:  
][][][ kRe

i
k

i
k

iP ερ +−ℜ=   (3-24) 
 
In order to find a solution close enough to the true 

position, ][k

iP  should be close to zero. Then, by Calculus 
techniques [32], we have 

 

( ) ( )
( ) ( )−Ε+−+

−+−
≈

Ε+++=
≈−

++

++

+

][]1['][]1['

][]1['][]1['

''''

][]1[

kRkR
i

keke
i

keke
i

keke
i

R
i

e
i

e
i

e
i

i
k

i
k

i

zzZ

yyYxxX

ddzZdyYdxX

dPPP

εε

ε (3-25) 

 
As we want the value of the residual function to 

become zero in the next iteration, we let .0]1[ =+k
iP  Then, 

the above equation becomes: 

( )( )
( )( )
( )( )
( )( )−Ε+

−+
−+
−+

=

+

+

+

+

][]1[][][][]['

][]1[][][][]['

][]1[][][][]['

][]1[][][][]['

][

,,,
,,,
,,,
,,,

0

kRkRkRkekeke
i

kekekRkekeke
i

kekekRkekeke
i

kekekRkekeke
i

k
i

zyx
zzzyxZ

yyzyxY
xxzyxX

P

εεε
ε
ε
ε

    (3-26) 

 
As at the end of k-th iteration, the values of 

'''][ ,,, iii
k

i ZYXP , and '
iΕ  are known for mi ...,,2,1= . 

(3-26) specifies effectively a system of equations which 
we want to solve for ( )]1[]1[]1[]1[ ,,, ++++ kRkekeke zyx ε . 

 
Given the above analysis, we are now ready to present 

the algorithm of the NR method: 
Step 1: Determine an initial solution, e.g.,  

( )][][][][ ,,, kRkekeke zyx ε  = (0, 0, 0, 0); (3-27) 
Step 2: Let k = 0; 
Step 3: For mi ...,,2,1= , compute the value of ][k

iP  
by (3-24); 

Step 4: Solve (3-26) for ( )]1[]1[]1[]1[ ,,, ++++ kRkekeke zyx ε . In 
the case of 4>m , the system of equations in (3-26) is 
over-determined. Hence, the Ordinary Least Squares 
(OLS for abbreviation) [16] method should be used to 
solve (3-26). 

Step 5: If ]1[ +k

iP  is small enough, stop. Otherwise 
continue.  

Step  6: Let k = k + 1 and go to Step 3. 
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3.4.2. Remarks.  
 
Application Assumptions. Some ideas of the NR 
algorithm may not be clear in the presentation of the 
algorithm. Especially, the algorithm makes several 
implicit approximations. We would like to reveal these 
approximations here in order to help the reader to 
understand and appreciate the algorithm. 
 

First, (3-19) which is solved by the NR method, is an 
approximation of (3-17) which we really want to solve. 

 
Second, in Step 4, a set of linear equations is solved. 

Here, the Taylor series [32] are effectively used to 
linearize the original quadratic equations. This helps to 
reduce the computational overhead. 

 
Third, when 4>m , the system in (3-26) becomes over-

determined. The OLS method is used to derive a solution. 
Note that the least square method is commonly utilized in 
this kind of situation in order to derive a solution that fits 
best with m  given equations. 

 
Validity of the Ordinary Least Square Method. Our 
reader may wonder if the OLS method is really valid here. 
In other words, under what kinds of conditions are the 
solutions derived with OLS reasonably accurate?  In [11] 
[14] [15][24], extensive discussions have been given to 
argue that the OLS method is reasonable when it is used in 
practical positioning systems. Nevertheless, we state the 
major results from [11] that validate the approach taken in 
the algorithm.  
 

The system of equations in (3-26) becomes over-
determined when 4>m . In this case, generally no solution 
can satisfy all the equations in (3-26). That is, any solution 
will result in certain errors. As such, for a given solution 
( )][][][][ ,,, kRkekeke zyx ε , we may rewrite (3-26) as follows: 

VBAX +=    (3-28) 
where 
 

Ε

Ε
Ε

=

][,][,][,][
''''

'
2

'
2

'
2

'
2

'
1

'
1

'
1

'
1

............

kRkezkeykexmmmm ZYX

ZYX
ZYX

A

ε

(3-29) 

−
−
−
−

=

+

+

+

+

][]1[

][]1[

][]1[

][]1[

kRkR

keke

keke

keke

zz
yy
xx

X

εε

, 

−

−
−

=

][

][
2

][
1

...
k

m

k

k

P

P
P

B   (3-30) 

where iX ' , iY ' , iZ ' and i'Ε  are defined in (3-20), (3-21), (3-
22) and (3-23), respectively. In (3-28), V is defined as 
follows: 
  

=

mv

v
v

V
...

2

1

   (3-31) 

where iv is the error in the i-th equation. 
 
Based on the above definitions, we now can state the 

optimality condition as follows: we say a solution is 
optimal if it minimizes the sum of squared errors. That is, 
an optimal solution minimizes 

( )
=

m

i
iv

1

2    (3-32) 

 
According to [16], the OLS method will generate the 

optimal solution if a solution satisfies the following 
conditions: 

• ( ) 0=ivE ,              (3-33) 
• ( ) ∞<= 2var σiv ,              (3-34) 
• ( ) jivv ji ≠= ,0,cov .             (3-35) 

where mi ...,,2,1= and 4>m . 
 
(3-33) means that the errors of all residuals in B have a 

zero-mean. (3-34) implies that the errors of all residuals 
in B have the same variance. (3-35) indicates that the 
errors of any two different residuals in B are uncorrelated.  

 
Fortunately, with the parameter values taken from 

practical GPS systems [24], (3-26) meets all the 
conditions stated in (3-33), (3-34), and (3-35). Thus, the 
OLS method is valid in the NR algorithm. 
 
4. Our Proposed Algorithms 

 
4.1. The Basic Ideas 
 

In this section, we discuss the major ideas utilized in 
our algorithms. Recall that in (3-17), the NR method treats 

S
iε as an error in e

iρ . In our algorithms, we also treat S
iε  

as an error in e
iρ . However, in other aspects, our 

algorithms are significantly different from the NR method. 
We discuss them in the following. 

 
First, for Rε , the receiver dependent error, the NR 

method treats it as an unknown variable and solves it 
during the iteration process. We intend to take a different 
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approach. From the knowledge of clock bias in GPS 
receivers, we know that clock bias is predictable in 
practice (which will be discussed later) [12] [33]. An idea 
in our algorithms is to use a prediction model to 
dynamically calibrate the clock. That is, before we solve 
the equations, we will first estimate a value, say Rε̂ , for Rε  
by using a prediction model. Let the right side of (3-17) 
be E

iρ . We now have 
      Re

i
Re

i
E
i ερερρ ˆ−≈−=   (4-1) 

 
Thus, (3-17) can be written as follows: 

E
i

e
i

e
i

e
i zzyyxx ρ≈−+−+− 222 )()()(  (4-2) 

 
(4-2) is the system of equations we will try to solve. 

We will discuss in detail how to use the clock prediction 
model in a practical situation in Section 5.2.2. For the 
moment, our reader may assume that the value of  Rε̂  and 
hence the value of E

iρ is given. 
 
Our second idea is direct linearization. The NR 

method performs linearization during the iteration process 
by using Taylor series approximation. We will perform 
linearization directly on (4-2) by using algebraic 
techniques. By doing so, we can eliminate iterations and 
solve the equations directly, resulting in significant 
improvement in terms of computation time overhead. We 
will discuss this approach in Section 4.3. 

 
The third idea is related to the least square method. In 

the NR method, the OLS method is used as the conditions 
in (3-33), (3-34), and (3-35) are met. Our case is different: 
(3-35) cannot be satisfied for the equations that are 
directly linearized. We nevertheless find that the General 
Least Squares (GLS for abbreviation) [16] method is 
valid for use. This will be discussed in Section 4.4. 

 
4.2. Clock Bias Prediction 
 

As we mentioned in Section 4.1, our method is based 
on a model of clock bias prediction. From (3-7), we know 
the true bias is tΔ . As we do not know the exact value 
of tΔ , a prediction model must be properly developed in 
order to obtain an approximate value of tΔ .  

 
Typically, in practice, a clock has a constant drift due 

to its stability on frequency. Then, t̂Δ , the estimation of 
tΔ can be expressed as [15] [27] [30]: 

rtDtt e+=Δ≈Δ ˆ   (4-3) 
where D  is the offset at 0=et and r  is the clock drift. 
Therefore, we have Rε̂  as follows: 

( )rtDctc e
R +≈Δ= ˆε̂   (4-4) 

The question is how we can obtain values of D  and r , 
so we can compute t̂Δ or Rε̂ when needed. To do so, we 
must know the accurate standard time. In practice, two 
approaches have been taken: 1) To periodically acquire an 
accurate standard time from external time-keeping 
providers; 2) To use the clock bias calculated by the NR 
method as an approximation to t̂Δ when external providers 
are not available [3] [10] [17] [33].  

 
In Section 5, we will discuss practical examples of how 

to calculate D  and r  once the standard accurate time has 
been obtained or estimated. 

 
Substituting (4-4) into (3-12), we have the revised 

formula for the pseudo-range as follows: 
( )rtDc e

e
i

Re
i

E
i +−=−= ρερρ ˆ   (4-5) 

 
4.3. Direct Linearization Method 

 
In this section, we will introduce our linearization 

method. Expanding the left side of (4-2), we have the 
following m  equations: for mi ,...,1= , 

( ) ( ) ( ) ( )2
222222

222
E
ie

i
e

i
e

i

iii
eee

zzyyxx

zyxzyx ρ=
−−−

+++++
 (4-6) 

where E
iρ is given in (4-1). 

 
We can see in each equation that the coefficients of 

quadric items for ex , ey , and ez are identical. Thus, these 
terms can be eliminated directly by subtraction. Now, if 
we subtract the first equation from the rest of equations, 
we have a system of 1−m linear equations: 

( )
( )
( )

( )
( )
( )
( ) ( )( )−−

−+

−+

−

=

−+

−+

−

2

1

2

2
1

2

2
1

2

2
1

2

1

1

1

2
1

EE
j

j

j

j

e
j

e
j

e
j

zz

yy

xx

zzz

yyy

xxx

ρρ

  (4-7) 

where mj ...,,3,2=  and 3>m . Re-write (4-7) in a 
matrix form: 

ee DAX =         (4-8) 
where 

−−−

−−−
−−−

=

111

131313

121212

.........
zzyyxx

zzyyxx
zzyyxx

A

mmm

,  (4-9) 

=
e

e

e

e

z
y
x

X ,   (4-10) 

and 
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Now, we need to solve (4-8). As the system is linear, 

we no longer need to use an iteration method. 
 
4.4. Use of General Least Square Method 
 

When 3>m , (4-8) becomes over-determined. Hence, a 
method like the OLS method may have to be used in order 
to derive a solution that fits best with the equations. 

 
If we use the OLS method, the solution can be 

expressed as follows: 
( ) eTTe DAAAX 1−=   (4-12) 

 
The question is whether (4-12) is optimal. The 

following theorem, unfortunately, indicates that the OLS 
method is not optimal here. 
 
Theorem 4.1: When 3>m , for the system of equations in 
(4-8), conditions of the OLS method cannot be met, hence 
the OLS method is not optimal for solving (4-8). 
Proof. We only need to show that condition (3-35) cannot 
be met. Let  

ii
E

i ρρρ Δ+=   (4-13) 
where jρΔ is the difference between the real distance and 
measured distance from jS  to the receiver. We also know 
from [24] that the following assumptions can be made: 

( ) 0=Δ jE ρ and ( ) 2var σρ =Δ j   (4-14) 

( ) jiji ≠=ΔΔ ,,cov 2σρρ   (4-15) 
 
(4-14) means that jρΔ is zero-mean and all having same 

variance 2σ . (4-15) means that all pseudo-ranges are 
measured independently. Then, the errors in pseudo-
ranges are uncorrelated from each other. Assume that the 
errors in eD construct a column vector with 

1−m elements: 
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Δ
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That is, the error iβΔ in e

iD is given by 
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where 1...,,2,1 −= mi . 
 
Hence, 
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Next, we will calculate the covariance for any two 

different iβΔ . We need to calculate the expected value for 

iβΔ first, we have 
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That is  

( ) 0=Δ iE β    (4-19) 
 
Then, we have  
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where 1...,,2,1 −= mi and 1...,,2,1 −= mj . 
 
That is 

( ) 0,cov 22
1 ≠=ΔΔ σρββ ji   (4-20) 

 
Therefore, Theorem 4.1 is proven.                   
 
Thus, while the OLS method may still be used, given 

Theorem 4.1, it would be better if we can identify an 
optimal method to solve (4-8). Let us consider the General 
Least Squares (GLS) method. According to [16], the GLS 
method derives the solution by the following formula: 

( ) eTTe DMAAMAX 111 −−−=   (4-21) 
where M  is the covariance matrix of βΔ : 

( ) ( )TEM βββ ΔΔ=Δ= cov   (4-22) 
 
The optimality requirement of the GLS method is less 

than the OLS method. According to [16], (4-21) is optimal 
if the following conditions hold: 

• ( ) 0=Δ iE β ,              (4-23) 
• ( ) Ω=Δ 2cov σβ ,              (4-24) 

where Ω is a positive definite matrix but may not be an 
identity matrix. (4-23) means all elements in βΔ  are 
zero-mean; (4-24) means that different elements in 

βΔ now can be correlated. Optimal here means that the 
sum of squared errors, i.e. iβΔ , is minimal. 

 
We have the following theorem to show that the 

solution given by (4-21) is optimal. 
 
Theorem 4.2: When 3>m , for the system of equations in 
(4-8), conditions of the GLS method can be met. Hence, 
the GLS method is optimal for solving (4-8). 
Proof. To prove the theorem, we need to show that 
conditions in (4-23) and (4-24) are met. First, from (4-19), 
we know ( ) 0=Δ iE β . Thus, the condition in (4-23) is 
satisfied. 

 

Now, let us calculate the covariance matrix for βΔ . 
From [21], we have the following: 

( ) Ψ=Δ 2cov σβ   (4-25) 
where  
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By (4-26), we see that Ψ is not an identity matrix but a 

positive definite matrix, so the condition in (4-24) is also 
satisfied. Theorem 4.2 is proven.               

 
4.5. Our Algorithms 

 
Based on the discussions above, we propose two 

algorithms:  
• Algorithm DLO: uses the direct linearization with 

the OLS method, and  
• Algorithm DLG: uses the direct linearization with 

the GLS method.  
 
The pseudo codes of the algorithms are given below. 
 

Algorithm DLO 
Step 1. Calculate Rε̂ ; 
Step 2. Calculate E

iρ  by (4-1) and substitute it into (4-
10); 

Step 3. Calculate eX  by the ordinary least squares 
method, i.e., 

( ) eTTe DAAAX 1−=   (4-12) 
 

Algorithm DLG 
Step 1. Calculate Rε̂ ; 
Step 2. Calculate E

iρ  by (4-1); 
Step 3. Calculate covariance matrix M of eD . 
Step 4. Calculate eX  by the generalized least squares 

method, i.e., 
( ) eTTe DMAAMAX 111 −−−=   (4-21) 

 
In Section 5, we will compare the performance of the 

algorithms with the NR method. 
 

5. Performance Evaluation 
 

5.1. Performance Metrics 
 

We will first define absolute performance metrics. We 
will then define performance metrics related to that of the 
NR method in order to carry out an effective comparison.  
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Let a GPS system use a particular location algorithm 

O  where O  can be NR, DLO, or DLG, as discussed in 
Sections 3 and 4. If the true position of the GPS receiver 
is ( )zyx ,,  and the estimated position is ( )eee zyx ,, , the 
absolute error of the GPS system is then given by 

( ) ( ) ( )222 zzyyxxd eee
o −+−+−=  (5-1) 

 
Accuracy Rate for location algorithm O  is defined as 

follows:  

%100×=
NR

O

d
dη   (5-2) 

where subscribe O  can be either DLO or DLG. 
If %100>η , it means the accuracy of location algorithm 
O  is worse than NR; otherwise it is better. 

 
Let execution time for executing algorithm O  be Oτ  

where O  can be NR, DLO, or DLG as discussed in 
Sections 3 and 4, respectively. Execution Time Rate for 
algorithm O  is given by  

%100×=
NR

O

τ
τθ   (5-3) 

where subscribe O can be either DLO or DLG. 
If %100<θ , it means method O is better than NR method; 
otherwise method O is worse.  
 
5.2. Experiment Settings 
 
5.2.1. Data Sets 
 
We downloaded four data sets randomly selected from 
land observation stations [8]. We chose four different 
locations and obtained four data sets. Table 5.1 provides 
the specifications of these data. All measurements are 
based on the L1 signal. Each data set contains 24-hour 
observational data, which contains 86,400 data items. 
That is, for every second, all available satellites’ 
coordinates and pseudo-ranges are contained in one data 
item. Generally each item contains data for 8 to 12 
satellites.  

 
Our objective here is to use each of these three 

methods, namely NR, DLO, and DLG, to compute an 
estimation for the location of the GPS observation station.  

 
5.2.2. Clock Bias Prediction on Data Sets 
 
When method DLO or DLG is used, we will use the 
method in (4-4) to calibrate the clock. 

 
It is our understanding that observation stations use 

different approaches, say, clock steering approach or 
threshold approach, to calibrate their clocks [15][24]. Our 
model discussed in (4-3) covers both approaches. We 
briefly describe these methods here. For details, please 
refer to [15] [24]. 

 
With the steering approach, the system manages to 

control rte  within a small range of standard time. With 
the threshold approach, rte  will change as the passage of 
time. Whenever the clock error reaches a pre-set 
threshold, the clock will be adjusted. After knowing the 
behavior of clock bias in the data, we can use following 
method calculate D  and r : 

 
For the system with the steering approach, D  is 

calculated only once at the initialization time (i.e., for the 
systems with data sets 1, 2 and 3). For the system with the 
threshold approach, D is calculated whenever clock bias 
is reset. In either case, we use the NR method to derive 

Rε  and then compute D  by the following formula:  
cD R /ε≈    (5-4) 

 
For clock drift r , a small set of data items at the 

initialization time is used to compute it.  
 

5.2.3. Computation Environment  
 
When executing the location algorithms with a computer 
system with the following configurations: It has an AMD 
Dual Processor with 2GHz and 2MB of Cache, 2GB 
Physical Memory, and 150GB Disk. The operating system 
is Linux and C is used as the programming language. 
 
5.3. Observations on Execution Time Rates 
 

From Fig. 5.1, we can see that execution times of the 
DLO and DLG methods are significantly less than that of 
the NR method. The average execution time of Algorithm 
DLO only takes typically less than 20% of that of the NR 
method, indicating a significant improvement.  

Table 5.1. Data Set Specifications 
No. Site ID ECEF Coordinates (X, Y, Z)(m) Date of Collection Clock Correction Type 
1 SRZN (3623420.032,-5214015.434, 602359.096) 2009/08/12 Steering 
2 YYR1 (1885341.558, -3321428.098, 5091171.168) 2009/10/23 Steering 
3 FAI1 (-2304740.630, -1448716.218, 5748842.956) 2009/10/29 Steering 
4 KYCP (411598.861, -5060514.896, 3847795.506) 2009/10/10 Threshold 
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(a) Data Set 1     (b) Data Set 2 

 

 
(c) Data Set 3     (d) Data Set 4 

 

Figure 5.1 Execution Time Comparisons

 
(a) Data Set 1    (b) Data Set 2 

 

 
(c) Data Set 3    (d) Data Set 4 

 

Figure 5.2 Accuracy Comparisons 
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For the algorithm DLG, as the number of satellites 

increases, the execution time rate increases. Nevertheless, 
even if the number of satellites is 10, the execution time 
rate is mostly about 50%, indicating still very good 
performance improvement in comparison with the NR 
method. 
 
5.4. Observations on Accuracy Rates 
 

From Fig 5.2, we can see that accuracy of algorithms 
DLO and DLG is close to the NR method. For DLG 
algorithm, it is only slightly different from NR (accuracy 
rate is around 110%). Regardless of whether there are 
more or less satellites, accuracy rate of DLG remains 
almost constant. For algorithm DLO, its accuracy 
becomes worse when the number of satellites increases. 
When there are 10 satellites, the accuracy rate decreases 
to around 120%.  

 
The reason why algorithm DLO’s accuracy becomes 

worse when using more satellites is that, when more 
satellites are used, more errors are introduced to equation 
system in (4-12). This will decrease the accuracy of 
algorithm DLO. However, for the DLG algorithm, the use 
of covariance matrix in (4-25) will eliminate the effect of 
these errors, so its accuracy rate will keep as a constant.  

 
6. Final Remarks 
 

In this paper, we have discussed and analyzed a new 
algorithm for the GPS positioning problem. Our approach 
uses a direct linearization method. In comparison with the 
traditional NR method, our proposed algorithm can 
achieve similar performance in terms of positioning 
accuracy while taking much less execution time. 
Typically, our new methods take about one fifth of the 
computation time required by the traditional NR method. 

Our investigation is preliminary and many extensions 
are possible. For example, the accuracy can be further 
improved if we can identify a “good” satellite to be used 
as the base to construct the linear system. In the algorithm 
we propose in this paper, this satellite is randomly chosen. 
Another extension is to consider better clock bias models 
so the clock prediction can be further improved along with 
the accuracy of the algorithm. The third extension is to 
optimize the matrix operations in the context of our 
problem so the computation time may be further reduced. 
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