
1 
 

An Efficient Hybrid Localization Scheme for 
Heterogeneous Wireless Networks 

Zimu Yuan1, Wei Li1, Adam C. Champion2, Wei Zhao3 
1Institute of Computing Technology, Chinese Academy of Sciences, China 
2Department of Computer Science and Engineering, Ohio State University 
3Faculty of Science and Technology, University of Macau, Macau, China 

{yuanzimu, liwei}@ict.ac.cn, champion@cse.ohio-state.edu, umrector_zhao@umac.mo 

Abstract—The ability to track and locate physical entities is a 
fundamental requirement for Cyber-Physical Systems (CPSs), 
especially in an ad-hoc wireless environment. In Heterogeneous 
Wireless Networks (HWNs), hybrid localization schemes are 
needed due to the coexistence of both accurate and coarse 
measurement mechanisms. However, current localization 
schemes cannot fully satisfy HWNs’ accuracy requirements. 
Therefore, we propose a universal measurement metric called 
Direct Proportion Distance (DPD) that can leverage most existing 
measurement mechanisms such as TOA/TDOA, RSS, AOA, Link 
Diagnosis (LD) and Signal Coverage Detection (SCD). We also 
prove that DPD is directly proportional to the physical distance 
between two wireless nodes. Based on this metric, we present 
three new localization algorithms and compare them with 
classical methods. The experiments verify that our method 
performs better than previous localization algorithms when both 
accurate and coarse measurements are fully utilized.  

I. INTRODUCTION  
In Cyber-Physical Systems (CPSs), wired or wireless 

networks serve as an infrastructure to integrate physical 
entities and computer systems. Localization technology plays 
an important role in these networks to locate and track 
physical entities, especially in a wireless environment. 
However, in Heterogeneous Wireless Networks (HWNs), 
different nodes have different types of measurement 
mechanisms. Some sophisticated nodes (e.g. mobile phones, 
GPS receivers, laptops) may have expensive devices that 
support accurate measurements such as TOA, TDOA, AOA and 
RSS [6-9] [10-11]. Other nodes (e.g. wireless sensors) may 
only have coarse measurement mechanisms such as Link 
Diagnosis (LD) [15-17] and Signal Coverage Detection (SCD) 
[25] [26]. This heterogeneity brings about two difficulties to 
accurately locating physical entities. First, due to coexistence 
of different measurement mechanisms, it is hard to universally 
express distances or angles between nodes. Second, due to the 
ad-hoc placement of network nodes, it is also hard to satisfy 
the rigid requirements of certain localization algorithms1. 

Currently, two approaches are used to solve the above 
problems. The first approach is to use hybrid measurements 
instead of a single measurement to enhance localization 
accuracy. Typical methods using this approach include 
TOA/AOA [27], TOA/RSS [28], etc. However, these methods 
only support limited types of measurements. Another approach 

                                                           
1 For example, in the Trilateration algorithm, at least four nodes are 
required to work together to locate a single node. In addition, in order 
to obtain feasible accuracy of localization, more nodes are needed to 
eliminate measurement errors.    

is using a universal metric to support all measurement 
mechanisms. Hop-Based Localization (HBL) [22-24] is a 
typical method using this approach.  The idea of HBL is to 
use hops to express distances among nodes. However, this 
method only supports coarse measurements such as LD and 
SCD. It cannot fully utilize accurate measurement mechanisms 
that already exist in HWNs to improve localization accuracy.           

In this paper, unlike previous work, we propose a novel 
concept called Direct Proportion Distance (DPD). DPD can 
be used as a universal metric to take into account both 
accurate and coarse measurement mechanisms. The essential 
difference between DPD and hops is that the distance between 
two nodes expressed by DPD is directly proportional to their 
true distance. However, hops only indicate the connection 
relationship between two nodes. In this sense, hops can be 
seen as a special case of DPD when physical distances among 
nodes have equal lengths.  

Applying the DPD metric to algorithms such as DV [18], 
RPA [19], and MDS-MAP [20], we present several 
DPD-based localization algorithms. Several practical issues 
related to localization accuracy are discussed. To verify the 
effectiveness and efficiency of these algorithms, we use 
simulations to compare our method’s performance with that of 
typical HBL algorithms. The experiments show that our 
approach performs much better than these algorithms.  

The rest of the paper is organized as follows. Section II 
introduces related work. Section III provides the motivation 
and description of DPD. Section IV discusses several practical 
issues of DPD-based localization algorithms. Section V 
conducts experiments. Section VI concludes the paper. 

II. RELATED WORK 
In this section, we present a classification for existing 

localization schemes and discuss their feasibilities in HWNs. 
In fact, localization techniques have two independent steps. 
The first step is to measure physical quantities such as 
distances, angles, or linkages among wireless nodes. For a 
homogeneous network, network nodes use a universal metric 
to present physical quantities. For HWN, multiple 
measurement mechanisms coexist and hybrid measurements 
can be used to enhance localization accuracy. The second step 
is to use various localization algorithms (e.g. triangulation, 
trilateration, DV, etc.) to calculate locations. In this step, a 
single algorithm may be used to calculate locations. However, 
hybrid algorithms that integrate two or more algorithms can 
also be used to improve localization accuracy.  
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Based on the above discussions, we present a classification 
for existing localization schemes in Table 2.1. We can see that 
there are four different classes. Next, we briefly introduce 
each of these classes.   

Table 2.1. A Classification of Localization Schemes2 
Computation 

Model 
Measurement Mechanisms 

Single Hybrid 
Single I. [4-10, 18, 21-26, 34, 35] II. DPD-M, DPD-MDS 
Hybrid III. [19-20] IV. DPD-IM, [27-30] 

 
For Class I, this type of methods uses a single measurement 

mechanism and a single localization algorithm to calculate 
locations. Most of existing localization schemes belongs to 
this type. The method in [4] first uses TOA measurement and 
then uses the trilateration technique to calculate locations. The 
method in [18] uses hops as a universal measurement metric 
and the DV algorithm to calculate locations. 

For Class III, this type of methods uses a single 
measurement mechanism with hybrid localization algorithms. 
A typical scheme of this type is RPA [19]. This scheme first 
uses the TOA mechanism to measure distances. Then it uses 
the DV technique for the first round of calculation. Finally it 
uses the trilateration technique for the second round of 
calculation. This scheme combines two different localization 
algorithms to form a hybrid process. Their experiments show 
that this approach can improve localization accuracy. 

For Class IV, this type of methods uses both hybrid 
measurements and hybrid localization algorithms. Some 
methods of this type may support two or more measurement 
mechanisms [27-30]. For example, in [27], wireless nodes can 
support both TOA and AOA measurement. Then a hybrid 
TOA/AOA algorithm is used to calculate locations. The work 
shows that such an approach can improve location accuracy 
over that of any single algorithm.  

Our work belongs to both Classes II and IV. Based on a 
universal measurement metric called the Direct Proportion 
Distance (DPD), our scheme can support most existing 
measurement mechanisms. In addition, based on this metric, 
our scheme can also apply single localization algorithms 
(Class II) and hybrid localization algorithms (Class IV). In 
Table 2.1, we present three localization schemes: DPD-M, 
DPD-IM, and DPD-MDS, which use multilateration, iterative 
multilateration, and multi-dimensional scaling algorithms.  

It is obvious that Class I cannot be applied to HWNs. For 
Class III, current methods of this type can only support coarse 
measurements by LD and SCD, which cannot achieve 
satisfactory localization accuracy. For Class IV, compared 
with our schemes, previous work only supports limited types 
of measurement mechanisms. Such schemes are not feasible to 
HWNs containing many nodes that only support coarse 
measurement mechanisms.         

Different from previous localization schemes, our method 
can leverage both accurate and coarse measurement 
mechanisms. Based on the proposed universal measurement 

                                                           
2  DPD-M, DPD-IM, and DPD-MDS are localization algorithms 
proposed in this paper.  

metric, our scheme can support both single and hybrid 
localization algorithms. To the best of our knowledge, the 
DPD-based localization scheme in this paper is proposed for 
the first time.  

 
III. DPD-BASED DISTANCE MEASUREMENT 

A. Challenges and Motivations 
As mentioned, localization is a fundamental requirement of 

Cyber-Physical Systems in order to locate and track physical 
entities. Much work has been done for designing fast and 
accurate localization algorithms. However, accurately locating 
an entity accurately in a Heterogeneous Wireless Network 
(HWN) is a challenging problem. In fact, two reasons bring 
about great difficulties to accurately locate physical entities in 
HWNs. First, in HWNs, accurate measurement mechanisms 
such as TOA, TDOA, RSS, and AOA may co-exist with 
coarse measurement mechanisms such as Link Diagnosis (LD) 
and Signal Coverage Detection (SCD). Second, different 
localization algorithms such as triangulation, trilateration, DV, 
MDS, and others may also coexist depending on what 
measurement mechanisms they use. From Section II, we know 
that existing localization schemes cannot efficiently calculate 
locations in HWNs. Therefore, our motivation is to find an 
efficient way to enhance localization accuracy.  

In this paper, we propose a new measurement metric called 
Direct Proportion Distance (DPD) that can leverage both 
accurate and coarse measurement mechanisms. DPD can be 
seen as a proportional indicator of the physical distance. That 
is, the longer the physical distance, the larger the DPD, and 
vice versa3. In fact, DPD can unify various measurements into 
a uniform representation and take it as the input of localization 
algorithms4. Since deriving the DPD is not straightforward, we 
introduce the idea of Relative Position (RP), which is the basis 
of DPD’s construction.    
B. Relative Position (RP) of a Node Pair 

1) Relative Position (RP) 

aa

bb

cc

 
Figure 3.1. Relative Position of a Node Pair 

Here we give the definition of Relative Position (RP). We 
have a reference node a  and its two neighbors 
b  and c . Denote the physical distance between 
(a, b) and (a, c) as  and , respectively. Then we 
have 

  (3-1) 

                                                           
3 In fact, HBL can be seen as a special case of the DPD metric by 
which the distance between any pair of neighbor nodes is simply 
treated as ‘1’. 
4 Such algorithms are called DPD-based localization algorithms, 
which will be discussed in Section IV. 
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  (3-2) 
If  

,     (3-3) 
we call c closer than b to the reference node a. Otherwise, if  

,     (3-4) 
then we say c is equal to or farther than b to a.  

Based on the above definitions, we introduce how to 
calculate RP via different measurement mechanisms. 

2) Calculating RP via Different Measurement Mechanisms 
Here we assume that any node can send/receive messages 

to/from its neighbors, i.e., all nodes support the SCD 
mechanism. Fig. 3.1 illustrates an example we will use here.  

a) Calculating RP via TOA/ TDOA Measurement 
For TOA measurement, we know that a can measure the 

round-trip distance between (a, b) and between (a, c). We 
have 

  (3-5) 

,  (3-6) 
where c is the speed of light and  and  are the 
measured signal round-trip travel time from (a, b) and (a, c). 
By this means, the equation in (3-3) and (3-4) can be 
determined. The calculation for TDOA measurement is 
similar. 

b) Calculating RP via RSS Measurement 
For RSS measurement, the received signal strength is 

measured and distance estimation is calculated by 
   (3-7) 

,   (3-8) 
where , , and  
denote the received signal strength,  denotes the signal 
strength at a reference distance ,  denotes the path-loss 
exponent, and  denotes the random noise variance. Then, 
(3-3) and (3-4) can be determined to obtain a’s RP. 

c) Calculating RP via Link Diagnosis 
For Link Diagnosis, the link signature that captures the 

multipath characteristic and link quality between nodes is 
examined. With a set of classification methods such as 
Discriminant Analysis (DA), a can obtain the signature 
between itself and b and c separately. If a and c have more 
similar signatures, Then, c is closer than b. 

d) Calculating RP via AOA Measurement 
For AOA measurement, the direction of incoming signals 

is obtained. In Fig. 3.2, if the angle , by the 
knowledge of geometry, we have following relations: 

 (3-9) 
(3-10) 

Then both  and can be 
established. However, when the angle , we 
cannot decide the RP of b and c. In this situation, RP will be 
calculated by the Signal Coverage Detection (SCD) 
mechanism5.  

                                                           
5 Note that the accuracy of DPD-based localization algorithm may 
suffer from this simplification. 

e) Calculating RP via Signal Coverage Detection 
Signal Coverage Detection (SCD) is the simplest 

measurement mechanism for wireless nodes in HWNs. If b is 
the neighbor of a but c is not, it is reasonable to obtain 

If b and c are both neighbors of a, we can assign 

C. Direct Proportion Distance (DPD) 
In this subsection, we will derive the concept of DPD. 

Based on the idea of RP, we first define a Reverse/Identical 
Pair. Then we present two theorems that are preconditions of 
the derivation of DPD. Finally, the physical meaning of DPD 
is explained. 

1) Reverse/Identical Pair 

aa bb
cc

ddee
aa bb

cc

dd  
           (a) Reverse Pair                  (b) Identical Pair 

Figure 3.2. Illustration of Reverse/Identical Pair. 

Based on the definition of RP, we define two types of node 
pairs: Reverse Pair and Identical Pair. Suppose there are two 
neighboring nodes a and b with another two nodes c and d 
nearby. Without loss of generality, we assume <  
(the case  =  will be discussed in Theorem 3.1). 
Here we have the following definitions: 
Definition 3.1. Reverse Pair. In Fig. 3.2(a), we have 

 and . Here we call the nodes 
c and d a Reverse Pair for the node pair a and b. 
Definition 3.2. Identical Pair. In Fig. 3.2(b), we have 

 and . Then we call the 
nodes c and d an Identical Pair for the node pair a and b. 

2) Proportion Intersection Point 
Based on Definitions 3.1 and 3.2, we give a theorem related 

to the concept of a Proportion Intersection Point. Denote the 
line segment between a and b as  and the line segment 
between c and d as . The perpendicular bisector of  is 
denoted as .  
Theorem 3.1. In a 2D graph,  must intersect with  if 
c and d are a reverse pair in Fig. 3.2(a). The intersection point 
is called a Proportion Intersection Point (the point e in Fig. 
3.2(a)). If c and d are an identical pair,  and  will not 
intersect (in the 3D case lines are treated as surfaces). 
Proof: (for brevity) Assign two coordinates (0, 0) and (x, 0) to 
a and b, respectively. Then, we only need to prove that the 
point  with coordinates ( , 0) must have  if c 
and d are a reverse pair. Otherwise  or  if c 
and d are an identical pair. 

Nodes c and d have coordinates ( , ) and ( , ) 
respectively. The coordinates of e can be written as 

 or . 
If we have a reverse pair, the conditions  and 

 exist and we can easily prove  
by algebraic substitutions. If we have an identical pair, the 
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conditions  and  exist and 
we can prove  or  similarly. When we have 

=  (or = ), we can directly derive 
from the perpendicular bisector theorem that  must cross 
the node a (0, 0) or the node b (x, 0).                   ■ 

3) Derivation of DPD 
Based on Theorem 3.1, we provide Theorem 3.2, which is 

the foundation of DPD. In fact, Theorem 3.2 will explain why 
DPD can be a proper indicator of the physical distance among 
nodes. Before we give the proof of Theorem 3.2, we provide 
some basic definitions first.  

Supposing there are a total of N nodes (including nodes a 
and b) randomly distributed in the area around a and b. Let  
be the size of this area. Denote the total number of pairs  
and choosing  nodes from , we have . 
Let  be the total number of reverse pairs in  node pairs. 

Since  pairs have  perpendicular bisector lines, the 
area can be divided into  small pieces 
[33]. Thus, the expected diameter is proportional to the square 
root of the small pieces’ expected size . As a result, 

, where  is a constant area 
shape factor as nodes are assumed to be randomly distributed 
in this neighboring area. Based on the above definitions, we 
have the following theorem: 
Theorem 3.2. Given the node pair in Fig. 3.2,  is the 
physical distance between a and b. Then,  is directly 
proportional to . 
Proof: As proved in Theorem 3.1, the perpendicular bisector 
line of a reverse pair must pass the line segment . The 
distance  can be calculated as  (the total 
number of reverse pairs distinguished from total  pairs 
times the expected diameter of small pieces). Then we get an 
approximation of the distance of : 

 (3-13) 

In a 2D case, we have , where  denotes the 
density of nodes in this area. Using  to substitute  and , 
we can rewrite (3-13) as 

,  (3-14) 

where   . 

In a 3D case, we have  and we can 
rewrite (3-13) as 

  (3-15) 

where   6.         ■ 
We use an example showed in Fig. 3.3 to explain Theorem 

3.2. The local area is divided into small pieces by the 
perpendicular bisectors of both the identical and reverse pairs. 
There are a total number of  perpendicular bisectors of 

                                                           
6 To facilitate measurement and calculation, in later sections,  is 
set as the total number of neighbor nodes  for the node a and b. 

 

reverse pairs and the intersection points are  
and  respectively. That is, the line segment  passes 

 small pieces, which are . 
Actually, we have . Since we 
cannot get the exact values of , 
here we calculate expected diameters of small pieces  
instead7. We can estimate  by . 

aa bb

 
Figure 3.3. Illustration of Theorem 3.2 

Definition 3.3. Direct Proportion Distance (DPD). Based on 
Theorem 3.2, we provide the following definition as a metric 
to indicate the physical distance between a and b:  

        (3-16) 
It is easy to see that is proportional to the physical 

distance (i.e. ). Thus, DPD can be 
used to indicate the actual physical distance proximity 
between a and b. 
Remarks. In the above definition, it is necessary to obtain  
(total neighboring nodes of a and b) and  (the total number 
of reverse pairs in neighboring area of a and b) to calculate 

 by (3-14), (3-15), and (3-16). Then, we need to judge 
if a pair of neighboring nodes of a and b is a reverse pair. To 
make this judgment, we need to compare RP of a and b. For 
example, we need to decide which of c and d is nearer to a (or 
to b). Note that in the above calculation, we need not measure 
the exact distance such as . 

IV. PRACTICAL ISSUES IN DPD-BASED LOCALIZATION 
ALGORITHMS 

A. DPD-Based Localization Algorithms 
Fig. 4.1 shows the relationship between our proposed DPD 

metric and existing localization algorithms. We can see that 
the DPD metric acts as a middle layer between measurement 
mechanisms and localization algorithms. That is, the DPD 
metric unifies various measurements into a uniform 
representation that can be taken as the input of existing 
localization schemes such as DV [18], RPA [19], MDS-MAP 
[20], and others [34] [35]. DV, RPA and MDS-MAP are 
typical localization schemes that use computation models such 
as multilateration, iterative multilateration, and 
multi-dimensional scaling (MDS), respectively, to calculate all 
nodes’ locations8. In this paper, we apply the DPD metric to 

                                                           
7 Since two ends , , are residuals, we consider the 
value of  is approximately equal to the expected 
diameter . 
8 At now, DPD input for algorithms are still not quite accurate, so the 
triangulation model cannot be adopted. 

375



5 
 

these typical algorithms to form DPD-based algorithms. Since 
the DV, RPD, and MDS-MAP algorithms can use physical 
distances or hop-based distances as inputs, we can directly 
apply the DPD metric to these algorithms without any 
modifications. To distinguish our approach from others, we 
denote our DPD-based algorithms DPD-M, DPD-IM, and 
DPD-MDS. Similarly, the hop-based algorithms are denoted 
DV-Hop, RPA-Hop, and MDS-Hop respectively. In Section V, 
we will compare the performance of DPD-based algorithms 
with Hop-based algorithms.  

TOA TDOA ... AOA

Direct Proportion Distance

DV RPA ... MDS

 
Figure 4.1. DPD-based Localization Archtecture 

After presenting DPD-based localization algorithms, we 
need to answer another question: what is the quality of 
DPD-based algorithms in terms of localization accuracy? 
From knowledge of measurement error analysis, we know that 
the accuracy of localization algorithms depends on the 
measurement error and error propagation of localization 
algorithms. Next, we will investigate how to provide more 
accurate DPDs to improve localization accuracy.  

From Section III, we know that DPD is calculated by 
 (i.e., the total number of neighbors of a and b) 

and  (the number of reverse pairs). Next, we will study 
how these two parameters affect the accuracy of DPD and 
select optimal configurations for them.  
B. Effect of Reverse/Identical Selections on DPD 

 
 (a) All Pairs Selected              (b) Neighbored Pairs Selected 

Figure 4.2. Selecting Reverse/Identical Pairs with Different Strageties 

In this part, we study how to choose node pairs to make 
DPD more linearly proportional to the physical distance. Fig. 
4.2 compares DPD values (the vertical axis) with true physical 
distances (the horizontal axis). In Fig. 4.2(a), we select all 
node pairs (both neighboring pairs and non-neighboring pairs) 
to calculate DPD9. In Fig. 4.2(b), we select all neighboring 
pairs to calculate DPD10. 

                                                           
9 Here short physical distances in the horizontal axis indicate that 
neighboring pairs are selected. 
10 The network setting for this is a 2D network of 200 nodes 
randomly deployed in 500 m  500 m square area. Subject to 

From Fig. 4.2(a), we can see that DPD calculated by 
neighboring pairs (in red dots) is approximately directly 
proportional to the physical distance compared with DPD 
calculated by non-neighboring pairs (in blue dots). Dashed 
lines in Fig. 4.2(b) show the spread pattern of DPD calculated 
by neighboring pairs. From both Fig. 4.2(a) and 4.2(b), we can 
see that the choice of neighboring pairs to calculate DPD is 
more appropriate for DPD-based localization algorithms. 
C. Effects of Measurement Errors on RP 

Due to the limitation of measurement mechanisms, we may 
face the uncertainty problem when calculating RP. That is, for 
a node pair (b, c) with a reference node a, . 
However, in practice, we may get  due to 
imprecise measurements. To study how measurement errors 
affect the correctness of RP, we introduce a concept called the 
estimated reverse pair count and denote it as . The 
definition of  is formalized as 

,             (4-1) 
where  and . Here,  is 
the confidence to determine reverse pairs. Followings are the 
meanings for different :  

(1)  indicates a convinced identical pair; 
(2)  indicates a convinced reverse pair; 
(3)  indicates the uncertainty of an identical 

pair or reverse pair. 
Based on the above definitions, we introduce the ratio 

 to measure the uncertainty of RP: 

         (4-2) 
In (4-2), if  is far less than ,  is large. 

Then we say the uncertainty of RP is high (and vice versa). 
Assigning different values of  (between 0 and 1), we can 
provide different levels of uncertainty of HWNs. In this paper, 
we investigate three levels of uncertainty to distinguish HWNs 
with different measurement accuracies: 
1) Low Uncertainty. We consider accurate measurement 

mechanisms such as TOA/TDOA, AOA and RSS. If the 
network is dominated by these measurement mechanisms, 
the uncertainty is low.    

2) Middle Uncertainty. This level means that accurate and 
coarse measurement mechanisms are nearly equally 
available in HWNs.   

3) High uncertainty. This level indicates that most wireless 
nodes are only equipped with coarse measurement 
mechanisms such as LD or SCD. 
Based on the above definitions, in Section V, we will 

investigate the efficiency of DPD-based localization 
algorithms on different levels of uncertainty. Actually, 
experiments show that our methods perform much better than 
others when the HWN uncertainty of is low.  

 

                                                                                                      
unequal transmission power and environmental interference, the radio 
range of each node is randomly selected between 50 m and 200 m. 
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Figure 5.1. Change of Beacon Numbers 

 
Figure 5.2. Change of Node Density 

 
Figure 5.3. Change of Area Size 

V. PERFORMANCE EVALUATION 
In this section, we will compare DPD-based localization 

algorithms( DPD-M, DPD-IM and DPD-MDS) with HBL 
algorithms. Before we present experiments, we first introduce 
some performance metrics and configurations.   
A. Performance Metrics and Experiment Configurations 

In our experiments, we use the Average Positioning Error 
(APE) to measure localization accuracy. That is, we have 

,  (5-1) 
where  is the calculated location and  is the 
true location. N is the total number of nodes.  

For the node pair selection issue in Section IV-A, we select 
neighboring node pairs in our experiments to calculate RP. For 
the uncertainty issue in Section IV-B, we set  to 

10%, 20% and 30% to study the performance of our methods 
under different levels of uncertainty.  

A square area  with N nodes is randomly 
deployed. Q beacon nodes are randomly selected from all 
nodes. We regenerate the network R times and take the 
average confidence results. By default, we have , 

, Q = 8, and R = 100. The log-distance path loss 
model [10] is used. The transmission power of each node is 
randomly chosen from -20 dBm to 0 dBm. The sensitivity 
threshold is randomly chosen from -100 dBm to -80 dBm. The 
path-loss factor  is set to 4. The random fading noise  is 
set to 6 by default. 
B. Experiments and Analyisis 

Table 5.1 gives notations for DPD-based localization 
algorithms. The terms “Low”, “Mid”, and “High” indicate 
levels of low, middle, and high uncertainty respectively.  
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TABLE 5.1 NOTATIONS OF ALGORITHMS IN FIG. 5.1 – FIG. 5.3 
Localization 
Algorithms 

Level of Uncertainty 
Low Middle High 

DPD-M (DV) DPD-Low-M DPD-Mid-M DPD-High-M 
DPD-IM (RPA) DPD-Low-IM DPD-Mid-IM DPD-High-IM 

DPD-MDS (MDS) DPD-Low-MDS DPD-Mid-MDS DPD-High-MDS 

1) Experiments on Changing of Beacon Numbers 
The number of beacon nodes increases from 3 to 20 with 

step 1. From Fig. 5.1, we can see that increasing beacon nodes 
helps improve the accuracy of all methods. For all cases, our 
method performs better than HBL. In particular, our method 
performs 32.5%, 20.6% and 6.8% better than the MDS-Hop 
algorithm with low, middle, and high uncertainty. Our method 
also shows significant improvements compared with the DV 
and RPA algorithms. 

2) Experiments on Changing of Node Density 
Tthe number of nodes changes from 50 to 400 with step 50. 

From Fig. 5.2, we see that our methods have a similar trend to 
HBL methods. In addition, our methods are better than HBL 
methods in terms of localization accuracy. In comparison with 
the MDS algorithm, our method shows 29.6%, 17.3%, and 2.9% 
improvement for low, middle, and high uncertainty 
respectively. In addition, our method gets more significant 
improvements compared with the DV and RPA algorithms. 

3) Experiments on Changing of Area Size 
Both the area length and width are enlarged from 200 m to 

1000 m in 100 m steps. The number of node increases 
proportionally with the area size to keep the node density 
constant. The beacon number remains at 8 when the area size 
changes. In Fig. 5.3, for all algorithms, the positioning 
accuracy gets worse as the scale of the network increases. 
Nevertheless, our method performs 35.7%, 20.4%, and 5.6% 
better than the MDS-Hop algorithm for low, middle, and high 
uncertainty, respectively. Our method performs significantly 
better than the DV-Hop and RPA-Hop algorithms. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a new metric called DPD that well 

suits localization in heterogeneous wireless networks in CPSs. 
The derivation of DPD is based on indirect measurement 
mechanisms that unify various measurement methods to a 
single relation called Relative Position. The directly 
proportional relationship between DPD and physical distances 
is proven by two theorems. The efficiency of DPD-based 
localization algorithms is verified via comparison with 
hop-based localization algorithms in various environments.  
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