
  

 

Abstract—The mammalian olfactory system uses odor-
specified temporal codes to represent the quality and the 
quantity of different odors. In order to better understand this 
coding strategy, a biologically plausible spiking neural network 
(SNN) was built and evaluated. In this study, MNIST images of 
handwritten digits were used to mimic the two-dimensional 
representation of odor information by the glomeruli in the 
olfactory bulb. The images were used to train the SNN based on 
the spike-timing-dependent plasticity (STDP) unsupervised 
learning rule.  The SNN model was implemented by Izhikevich 
neurons to represent both the pyramidal neurons and the 
GABAergic interneurons in the piriform cortex. The recognition 
accuracy of the SNN model was evaluated to gain insights for the 
temporal coding scheme in the olfactory system. The results 
suggested that the SNN model can effectively encode 2D neural 
representations with temporal codes and achieved 
discrimination accuracies close to animal behavioral 
performances in odor discrimination tasks. 

I. INTRODUCTION 

In the central nervous system, odor discrimination plays an 
essential role in survival and danger avoidance for animals in 
their natural habitats. In addition, the olfactory sensory system 
exhibits similar anatomical structures across different animal 
species suggesting that a common neural coding scheme has 
been preserved throughout evolution [1]. From a signal 
processing perspective, odor recognition can be considered as 
a pattern recognition process. Olfactory sensory neurons 
expressing different odorant receptors are sensitive to different 
chemical compositions of odorants, and these sensory neurons 
are scattered across the olfactory epithelium to maximize odor 
sensitivity. The axons of olfactory sensory neurons expressing 
the same odorant receptors converge to form glomeruli in the 
olfactory bulb. Therefore, each glomerulus encodes a specific 
chemical component, and these glomeruli are organized into a 
two-dimensional structure in the olfactory bulb [2]. When an 
odor is comprised of several chemical components stimulating 
the olfactory sensory neurons, the olfactory sensory neurons 
generate a unique neural coding pattern in the olfactory bulb. 
The downstream neural regions, including the mitral and tuft 
cells in the olfactory bulb and the olfactory cortex, interpret 
this encoded signal to determine odor qualities and quantities. 
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The odor-evoked response can further be used by the brain to 
integrate with other sensory signals, such as visual and 
auditory information, at the higher cortical regions to 
determine for a behavioral response.  

Spiking Neural Networks (SNNs) use artificial neural 
spikes to encode information for signal processing. Since the 
brain uses action potentials (biological neural spikes) for data 
processing, SNN is naturally a closer modeling system to 
mimic neuronal activities and the signal processing circuits in 
the brain, as compared to conventional Artificial Neural 
Networks (ANN). SNNs have recently been demonstrated to 
exhibit powerful computational capabilities and were applied 
to pattern recognition applications with successful outcomes 
[3]. Therefore, in this paper, we attempt to use SNN to model 
the olfactory sensory system and uses this model system to 
perform pattern discrimination tasks. The MNIST dataset is a 
collection of 2D images of handwritten digits. Since the 
olfactory information is also encoded in a semi-2D structure in 
the olfactory bulb, the MNIST dataset can then be loosely used 
to test our olfactory SNN model whether our SNN olfactory 
model can successfully separate these handwritten digits. 
Although this attempt was not ideal, the MNIST dataset may 
still lead to better understand of the coding principle for the 
olfactory sensory system and also promote the use of SNN in 
other pattern recognition applications.  

Recent modeling attempts of the olfactory system were 
largely done by using ANN where spiking odor information 
were translated into byte words for classification. Despite 
these ANN olfactory models can be robust in classifying odor-
evoked neural activities [4], [5], byte words, however, are 
foreign to a biological brain where action potentials (spikes) 
are used for information processing. SNNs, in contrast, closely 
mimic a biological brain in which temporal spiking activities 
are directly analyzed. In this study, we attempt to model the 
olfactory cortex directly using SNN, combining with the 
spike-timing-dependent plasticity (STDP) unsupervised 
learning rule, to understand how the olfactory system can use 
temporal spikes to differentiate 2D coding patterns.  
Handwritten digits [6] from the MNIST dataset was used and 
the pixel intensities were encoded by stochastically firing 
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neural spike trains. The spike trains were then inputted to the 
SNN olfactory cortical model for training and discrimination. 
Discrimination accuracies were estimated to help guide future 
improvements of the SNN model. 

II. METHODS 

A. Neuron and Synapse Models 

All spiking neurons used in the SNN model were 
implemented using Izhikevich neurons. Izhikevich neurons 
can provide a rich variation of neural firing patterns, similar to 
the Hodgkin-Huxley neurons, but with a much higher 
computational efficiency [7]. Izhikevich neurons use two 1st-
order ordinary differential equations to calculate spiking 
activities [7],  

𝑣′ = 0.04𝑣ଶ + 5𝑣 + 140 − 𝑢 + 𝐼ୱ୷୬ 

𝑢′ = 𝑎(𝑏𝑣 − 𝑢)  

where v is the membrane potential of the spiking neuron, u is 
the membrane recovery variable, and 𝐼ୱ୷୬  is the synaptic 
current. A neural spike is elicited when 𝑣 > 𝑉୮ୣୟ୩, and 𝑢 and 
𝑣  are reset based on the following after-spike resetting 
conditions, 

when 𝑣 > 𝑉୮ୣୟ୩ : ቄ
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 

The a, b, c, d parameters specify the recovery rates for 
different types of neurons. For the SNN model in this study, 
two settings were used to simulate regular spiking neurons 
with (a, b, c, d) = (0.02, 0.2, -65, 8) and fast-spiking neurons 
with (a, b, c, d) = (0.1, 0.2, -65, 2) [7]. 

A conductance-based synapse model was used to simulate 
the synaptic current 𝐼ୱ୷୬ . The synaptic current 𝐼ୱ୷୬  is 
expressed by the following equations, 

𝐼ୱ୷୬ = 𝑔ୣ(𝐸ୣ − 𝑣) + 𝑔୧(𝐸୧ − 𝑣) 

𝜏ୣ𝑔ୣ
ᇱ = −𝑔ୣ 

𝜏୧𝑔୧
ᇱ = −𝑔୧ 

where 𝑔ୣ and 𝑔୧ are the electrical conductances, Ee and Ei are 
the reversal potentials, and 𝜏ୣ and 𝜏୧ are the time constants, for 
the excitatory and the inhibitory synapses respectively. 

A synapse between the pre-synaptic and the post-synaptic 
pyramidal neurons was associated with a synaptic weight 𝑤 
for signal conductance. Spike-timing-dependent plasticity 
(STDP) unsupervised learning rule was then used to modulate 
this synaptic weight 𝑤. STDP, due to causality, strengthens the 
synaptic weight when a post-synaptic neuron fires right after 
the pre-synaptic neuron, but weakens the synaptic weight 
when the opposite firing sequence occurs. For computational 
efficiency, STDP was implemented using synaptic traces [8]. 

B. Network Architecture and Parameters 

The architecture of the SNN model was to mimic the 
primary olfactory cortex, also known as the piriform cortex. 
The primary olfactory cortex is a three-layered cortical 
structure consisting of glutamatergic excitatory pyramidal 
neurons and GABAergeric inhibitory interneurons [1]. 
Anatomically, the lateral olfactory tract (LOT) projects the 
odor-evoked neural activities from the olfactory bulb onto the 

layer 1 of the anterior piriform cortex, where both the 
inhibitory feedforward interneurons and the pyramidal 
excitatory neurons receive neural information from the LOT 
outputs [1], [9]. The pyramidal neurons located in the layer 2/3 
are connected to another set of pyramidal neurons via the 
inhibitory feedback neurons which reside in the layer 3 [5], [9]. 

The SNN implemented, as shown in Fig. 1, was a four-
layered network consisting of an input layer, i.e. LOT, and 
three other layers – the L2/3 pyramidal neuron layer, the L1 
feedforward interneuron layer, and the L3 feedback 
interneuron layer. The input layer behaved similar to LOT, 
projecting the encoded sensory information to both the L2/3 
pyramidal neuron layer and the L1 feedforward interneuron 
layer. The inhibitory neurons in the L1 feedforward 
interneuron layer were connected to the L2/3 pyramidal 
neurons to allow feedforward inhibition which limited the 
amount of signal integration for the pyramidal neurons in the 
early phases of bursting [9]. The L3 feedback interneurons 
received neural spikes from a subset of pyramidal neurons at 
L2/3 through excitatory synapses, and then fed their inhibitory 
outputs back to another random subset of pyramidal neurons 
at L2/3, resulting in lateral inhibitions for the neurons in the 
layer.  

Figure 1.  The SNN model to mimic the olfactory cortex 

TABLE I.  LIST OF PARAMETERS 

Neuron and connection Configuration 

Layer Name  Type 

Number 
and 

connection 
density  

LOT 
LOT 
LOT → FF 
LOT → PYR  

Poisson input generator 
Excitatory: 𝑔ୣ = 0.2 𝑛𝑆 
Excitatory: 𝑔ୣ = 0~0.2 𝑛𝑆 

784 
50% 
100% 

L1 
FF  
FF → PYR 

Regular spiking neurona 
Inhibitory: 𝑔୧ = 0.6 𝑛𝑆 

1024 
29% 

L2/3 
PYR  
PYR → FB 

Regular spiking neuronb 
Excitatory: 𝑔ୣ = 15 𝑛𝑆 

1024 
18% 

L3 
FB  
FB → PYR 

Fast-spiking neurona 
Inhibitory: 𝑔୧ = 1.2 𝑛𝑆 

1024 
35% 

a. In pyramidal neurons, 𝜏ୣ = 10 ms and 𝜏୧ = 20 ms 

b. In GABAergic interneurons, 𝜏ୣ = 5 ms   

During unsupervised learning, the synaptic weights of the 
neurons at the pyramidal layer receiving neural signals from 
the input layer were plastic and can be updated through STDP, 
while the other synaptic weights were fixed. In addition, 
threshold potentials of the pyramidal neurons were modulated 
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according to a homeostasis-like rule to balance the firing rates 
of all pyramidal neurons during the supervised training [3]. 
Configuration parameters of neurons and synapses were 
determined according to the measurement in anesthetized rats 
[10] and adjusted within in the biologically plausible range as 
listed in Tab.1. 

C. Temporal Encoding of Handwritten Digit Images 

The input layer resembled LOT projections carrying 
odorant information encoded by the mitral and tufted cells in 
the olfactory bulb. The mitral and tufted cells encode odor 
information with a temporal spike coding scheme, and time-
synchronized to the inhalation onset of a respiratory cycle [11]. 
Behavioral animal experiments and optogenetic neural 
interventions have demonstrated that odor types can be 
differentiated through analyzing the temporal spike sequences. 
Odor type is largely contained in the temporal spike sequence 
of the first 100 ms after inhalation  [11], [12].  

Figure 2.   The encoding process for the temporal code  

In this study, MNIST hand-written images were used to 
mimic the semi-2D encoding of the glomeruli at the olfactory 
bulb. Since the mitral and tuft cells encode the odor type with 
a temporal code scheme, the pixel intensities of the MNIST 
images were then converted to temporal spike sequences to 
mimic the outputs of the olfactory bulb. The time-encoded 
spike sequence was then projected to the SNN cortical layers 
through the LOT input layer. The MNIST handwritten digit 
dataset contains 60,000 labeled images for training and 10,000 
additional labeled images for evaluation. All the images are 
handwritten digits of 0 to 9 collected from a large population 
and the images were formatted to have an image dimension of 
28×28 pixels [6]. This image dimension is somewhat 
comparable to the glomeruli structure in the olfactory bulb. 

Parameters for temporal encoding were obtained from 
reported spike patterns in the mammalian olfactory bulb [11]. 
A typical respiratory cycle for a rodent is in the order of 200 
ms (the first 100 ms for inhalation and the latter 100 ms for 
exhalation), and it has been determined that odor information 
is largely represented by the spiking activities at the olfactory 
bulb during the first 100 ms inhalation period. Therefore, the 
intensity of an MNIST image pixel was translated to a start 
time for a bursting spike sequence. More specifically, during 
the first 50 ms, mimicking the onset of the inhalation, the input 
neurons produced a 150 Hz burst of spikes with a start latency 
between 0 and 50 ms, which was linearly extrapolated to a 
pixel intensity between 1 and 255. In this manner, a dark pixel 
fired much earlier than that of a light pixel. During the time 
period between 50 to 100 ms, pixels with zero intensity fired 
with a 5 Hz Poisson spike sequence to reduce synaptic weights 
that have no contributions to the classification. During the 

exhalation period between 100 and 200 ms, all the neurons 
stopped firing to mimic no information is encoded during this 
period.  

D. Training and Testing 

A training and testing scheme for the SNN model was 
employed [3] in which the SNN model was trained in an 
unsupervised manner using the 60,000 MNIST training 
samples with no labeling. After the SNN had learned all the 
60,000 images, the synaptic weights of the pyramidal neurons 
in the network were fixed and the hemostatic threshold 
potentials of the pyramidal neurons were also reset to their 
initial values. At this stage, the pyramidal neurons have 
learned the handwritten digits in their receptive fields, but an 
additional step was required to assign each of the pyramidal 
neurons to one of the 10 classes (digit 0 to 9). A series of 
training samples were again inputted to the SNN to associate 
the pyramidal neurons with their pre-classified labels. The 
pyramidal neuron stimulated by the training image with the 
highest firing response was associated with the pre-classified 
label of the training image. Once all the neuron has been 
associated, the training was finished. The performance of the 
trained SNN was evaluated by feeding the remaining 10,000 
MNIST testing samples to the network to determine its 
discrimination accuracy. The discrimination accuracy was 
determined by comparing the label of the highest firing 
pyramidal neuron to the pre-classified label of the testing 
image. If a particular testing image did not elicit any pyramidal 
neuron firing, the testing image was fed again to the SNN with 
a 20% increase in the burst frequency. 

III. RESULTS 

The synaptic weights (𝑤) of a pyramidal neuron trained 
through the unsupervised learning can be visualized by 
arranging the 784 synaptic weights into a 28×28 image. Fig. 3 
shows 100 weight images, randomly selected among all the 
1024 pyramidal neurons in the input layer, forming a 10x10 
image mosaic. Distinctive digits can be recognized on all the 
weight images, indicating that the digit patterns have been 
learned through unsupervised learning for the SNN. These 
learned digits can be considered as the receptive fields of the 
pyramidal neurons, and when an image best matched to one of 
the receptive fields, the pyramidal neuron then fired first and 
all the other pyramidal neurons were suppressed by the 
inhibitory interneurons. This behavior may be similar to odor 
decoding in the olfactory cortex in which odor-specified 
spatiotemporal codes were encoded by the olfactory bulb [11].  

Fig. 4 (a) shows the corresponding confusion matrix for the 
SNN. Using the 1000 MNIST testing images, the SNN model 
achieved an average discrimination accuracy of 60.23% of all 
the 10-digits. The overall discrimination accuracy was not 
high due to large variations in discrimination accuracies 
among the digits. The SNN network had the highest accuracy 
for digit ‘1’, achieving an accuracy of 91.8%, followed by 
~77% for digits ‘0’ and ‘9’, but remarkably low accuracies for 
the digits ‘4’ and ‘5’ of ~26%. The remaining digits had an 
accuracy of ~60%. 

Since most olfactory discrimination experiments were 
performed under a binary odor discrimination scheme, the 
results can be further analyzed by paring the 10 digits to binary 
discriminations. The accuracy of the binary discriminations 
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was computed pair by pair and shown in Fig. 4 (b). In binary 
discrimination, the baseline accuracy is 50% for random 
choices. In this analysis, the average accuracy of all digit pairs 
is 78.92% and the highest accuracy was obtained for the ‘0’ 
and ‘1’ pair, achieving an accuracy of 92.70%. The lowest 
performing pair was the ‘4’ and ‘9’, with an accuracy of only 
63.90%. 

Figure 3.  Synaptic weights between the input neurons and pyramidal 
neurons (100 examples randomly chosen from 1024 neurons). Colorbar 

indicates maximum (dark green) and minimum (white) synaptic weights. 

Figure 4.   (a) Confusion matrix for 10-digit discrimination (b) Binary 
discrimination accuracies for the digit pairs. 

IV. DISCUSSION 

In this study, MNIST handwritten images were classified 
using an SNN mimicking the olfactory cortex. There were 
some challenges for the SNN to achieve high overall 
discrimination accuracy, possibly due to some of the 
fundamental differences between odor stimuli and MNIST 
images. For odor stimuli, the neural information propagating 
from olfactory receptor neurons to the piriform cortex is 
relatively stable, and this information stability may be one of 
the reasons why the olfactory system is relatively robust 
against concentration variations and background interference 
[1]. In contrast, MNIST images suffered from translational and 
rotational shifts of information, making the discrimination 
much more challenging. In addition, some of the handwriting 
digits are very similar and have large overlapping regions, 
such as ‘3’, ‘5’, ‘8’, and these similarities contributes to much 
lower discrimination accuracies for these digits. This situation 
can be considered similar to using odor mixtures, rather than 
using pure compounds, for animal odor discrimination tasks. 
To this end, our discrimination performance was actually well-
matched to that of animal behavioral odor discrimination tasks 
using odor mixtures [13]. When rats were trained to do binary 
odor discrimination task for water rewards, the discrimination 
accuracy can be as high as 90-95% for pure odors, but the 
accuracy dropped to 60-65% when odor mixture was used with 
concentration ratios of 32/68 and 68/32 [2], [13]. 

From this study, several differences between temporal 
coding and rate code were observed. The temporal code is 
more time-efficient and can yield much faster response in 
discrimination tasks. In this study, the entire encoding and 
resting time for each image was 200 ms, which is significantly 
shorter than 500 ms typically used in rate-based networks [3]. 
With tweaking, it is possible to further reduce the epoch under 
100 ms, as in rapid sniffing of rodents. In addition, there are 
also noticeable differences in the receptive fields using the two 
coding schemes. Due to the competitive nature of the 
feedforward and the lateral inhibitions, synapses between the 
input neurons and the pyramidal neurons were more likely to 
update the synaptic weights with the early incoming spikes, 
representing higher intensity pixels. As a result, receptive 
fields generated using temporal codes tended to form thin 
strokes. In contrast, receptive fields generated by rate coding 
tends to have much thicker strokes [3]. These thicker strokes 
may contribute to higher tolerance in identifying shifted and 
rotated handwritten digits. On the other hand, in real olfactory 
systems, the relatively sparse connections of the receptive 
fields learned through temporal codes may possibly provide a 
more robust odor discrimination due to a more stable odor 
representation between the pyramidal neurons and the 
olfactory receptor neurons.  
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