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High-color-depth LCD drivers require nF-range capacitors as the charge reser-
voirs to handle the glitch energy during the conversion of the DAC [1]. The ref-
erence buffers based on multi-stage amplifiers can enhance the precision under
low-voltage supplies, but are exposed to instability when loaded by such large
capacitive loads (C, ). Frequency compensation via damping-factor control [2] is
capable of extending the C, -drivability up to 1nF, however, at the cost of penal-
izing the power (426pW) and area (0.14mm?). Although recent works [3-4] have
enhanced gain-bandwidth product (GBW) and slew rate (SR) showing better
FOMg (=GBW-C /Power) and FOM, (=SR-C,/Power), the C-drivability has not
been improved (i.e., 0.8nF in [3] and 0.15nF in [4]). This paper describes a
three-stage amplifier managed to afford particularly large and wide range of G
(1 to 15nF) with optimized power (144pW) and die size (0.016mm?), being very
suitable for compact LCD drivers [5] with different resolution targets. The design
barriers are methodically surmounted via local feedback loop (LFL) analysis
expanded from [6], which is an insightful control-centric method. Measured at
15nF C,, the attained FOMg (FOM, ) is >4.48x (>2.55x) beyond that of the state-
of-the-art (Fig. 21.6.1).

Design of frequency compensation classically hinges on the analysis of amplifi-
er’s transfer function H(s) once a potential topology is conceived [2-4]. Yet, the
involvements cannot explicitly relate the impact of each circuit element to the
pole-zero composition of H(s). In contrast, the LFL analysis upgrades the entire
pole-zero placement to a more discerning system level, as materialized in the
design of two-stage amplifiers [6]. This work extends the capability of LFL analy-
sis to handle more complex three-stage amplifiers, allowing systematic selection
of frequency compensation and comparison of merits.

Figure 21.6.2 shows the topologies of the three-stage amplifier in [3], [4], and
this work. The Bode plots of their LFL are depicted in Fig. 21.6.3. Essentially, if
no right-half-plane (RHP) pole appears in the LFL(s) of the amplifier (normally
the case), its GBW is mainly governed by the unity-gain frequency (w”) of the
dominant LFL. LFL analysis shows that the o, [3;in [3] is mainly contributed by
the current-buffer Miller compensation (CBMC) on the outer LFL (inner LFL with
Gmao Shows a loop gain <1). Though the LFL stability can be assured by push-
ing the original g,1/Cpy-pole to a lower-frequency (gy1/Cy), w,, [3) is still limited
by the goo/Cyp-pole. This inspection explains why extra compensation (via Cy)
and a low-gain Gy, were enforced in [3], offsetting the increment of w,, 3,
offered by CBMC. The feedforward stage (Go) only generates a high-frequen-
cy zero that has negligible impact to o, (3;.

The w, 41 in [4] is obtained via single Miller compensation (SMC) and parasitic-
pole cancellation. The latter is based on a passive left-half-plane (LHP) zero
made by R, and C, to cancel the g,:/Cr,-pole, while pushing the original
002/Cyo-pole to a lower frequency gyy/C,. The extent of w,, (4 is associated with
G and R,. Enlarging the former unavoidably calls for extra power, while the lat-
ter is upper-bounded by the LFL stability (due to the 1/Ran2-poIe) and the cri-
teria necessary to produce the LHP zero. Nevertheless, under the same C, and
power budget (i.e., Gp), the GpoR, term of w, 4) can still exceed the term
(Gm2/902) (Cr/C4) In w,, (), Where Cp,/C4 is limited to ~2. This insight is consis-
tent with their reported results.

Guided by those LFL analyses, this work benefits the CBMC for its high-frequen-
cy parasitic pole, while combining it with a tailored active-LHP-zero circuit for
parasitic-pole cancellation. Specifically, a high-pass network (R,, C, and Gp1)
with low output impedance offers the sought LHP zero without introducing
unwanted low-frequency poles, resolving the shortcoming of its passive coun-
terpart [4]. The loop gain of the LFL compresses the pole-zero doublet so as to
suppress the slow-settling component in the step response. Gy,,» not only offers
V-to-I conversion for driving Gy, but also isolates V, and V3 nodes to limit Gy,

(<<Cpp), resulting in a high-frequency 1/R,Cyy-pole. Unlike [3] and [4],
©,, proposed 1S Mainly limited by the Gy1/C,-pole, which sits at a much higher fre-
quency than the g»/Cpp-pole in [3], and the 1/R,Cpp-pole in [4]. As a result,
Oy, proposed CaN SUTPass w,, (3) and o, 4 under the same G, and power budget.

Figure 21.6.4 depicts the circuit-level schematic of the proposed three-stage
amplifier. The 1+-gain-stage G,,; features an input differential pair (Mq,). A
wideband current buffer G, (Ms.g and Ry_,) [7] offers a low input impedance of
1/[2(9msR1+1)9mgl, pushing the G,,,/C-pole to higher frequencies while avert-
ing reducing the output impedance of Gy, (drain of M; and Mg). The LFL of the
current buffer features a moderate self loop gain (2g,5R1+1) to impel its own
poles to high frequencies while ensuring local stability. The active LHP zero (R,
and C,) is embodied in the 2"-gain-stage G» (M41.14) to spare power. G4 and
Gmpo are realized by My5 and M4, respectively. My, (driven by M) offers a feed-
forward gain enhancing the slewing performance of G,,». The 3“-gain-stage G,
(My5) is combined with another feedforward gain G, (My). Targeting a >1nF G,
the SR of the amplifier is dominated by the maximum dynamic current of the 3
gain stage, which can be designed to afford a certain amount of resistive load
(e.q., add 30% quiescent current for 25kQ) without affecting other performanc-
es.

The fabricated three-stage amplifier is optimized for C, drivability such that the
power and area remain comparable with the recent works [3,4]. The measured
AC and step responses are plotted in Fig. 21.6.5. C, can be as large as 15nF with
18.1dB gain and 52.3° phase margin, and as small as 1nF with 9.8dB gain and
83.2° phase margin. The extrapolated DC gain is >100dB. At C,=15nF, the GBW
is 0.95MHz, whereas the average SR and 1% setting time (Tg) measured in
unity-gain configuration are 0.22V/ps and 4.49ps, respectively. Although the
measured gain (7.8dB) and phase (79.5°) margins are not inferior when C is
reduced to 0.5nF, a small (~0.9mV,,;) high-frequency (~12MHz) ringing is super-
imposed onto the step response, due to the LFL instability. This result is consis-
tent with the design and simulation, giving more insight when judging the C,
variability. When C, is further downsized to 0.1nF, both the LFL and the amplifi-
er (in unity-gain feedback) become unstable, as two complex conjugate RHP
poles have already appeared in H(s).

Figure 21.6.6 shows the performance summary. This work not only succeeds in
extending the C,-drivability to 15nF, but also shows improved FOMg (>4.48x)
and FOM, (>2.25x), and their large-capacitive-load versions [3]: LC-FOMg
(>2.76x) and LC-FOM, (>1.57x), with respect to the prior arts. The die occupies
0.016mm? in a 0.35um CMOS process (Fig. 21.6.7). The robustness of the
results has been confirmed through performing measurements on over 20 sam-
ples. At 15nF C, the o of each key performance parameter is <13% of its mean.
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Figure 21.6.1: Benchmark of the state-of-the-art multi-stage amplifiers. |
This work shows improved FOMs and FOM,, while entailing small area fjqyre 21.6.2: Three-stage amplifiers in [3], [4] and this work. “x” denotes

(compensation capacitance C,).
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Figure 21.6.3: Bode plots of the three local feedback loops presented in Figure 21.6.4: Schematic and device sizes of the proposed three-stage
Fig. 21.6.2. amplifier. The bias currents are design values.
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extracted values from plots.
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Figure 21.6.7: Chip micrograph. 20 chips were measured to confirm the robustness of

the results.

20 chips, C,=15nF Mean g M:an x100%
GBW (MHz) 085 0.062 7.3%
Phase Margin () 532 2684 5.0%
Gain Margi (08) 1996 | 142 | 71%
Average SR (VIpS) 021 0.014 6.7%
Average 1% Ts (uS) 477 021 4.4%
Power(uW) w0 | 1 10.0%
FOM, [(MHz - pF)imW] 89.290 | 10888 12.2%
FOM,_ [(VipsS - pFymW] | 22528 | 2,920 13.0%
LC-FOM; (MHz/mW) 34342 | 4188 12.2%
LC-FOM,_ [VipS)im] 8661 | 1,123 13.0%
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