21.6 A 0.016mm² 144μW Three-Stage Amplifier Capable of Driving 1-to-15nF Capacitive Load with >0.95MHz GBW

Zushu Yan¹, Pui-In Mak¹, Man-Kay Law¹, Rui Martins^{1,2}

¹University of Macau, Macau, China ²Instituto Superior Tecnico, Lisbon, Portugal

High-color-depth LCD drivers require nF-range capacitors as the charge reservoirs to handle the glitch energy during the conversion of the DAC [1]. The reference buffers based on multi-stage amplifiers can enhance the precision under low-voltage supplies, but are exposed to instability when loaded by such large capacitive loads (C₁). Frequency compensation via damping-factor control [2] is capable of extending the C_L -drivability up to 1nF, however, at the cost of penalizing the power (426µW) and area (0.14mm²). Although recent works [3-4] have enhanced gain-bandwidth product (GBW) and slew rate (SR) showing better FOM_S (=GBW·C_L/Power) and FOM_L (=SR·C_L/Power), the C_L-drivability has not been improved (i.e., 0.8nF in [3] and 0.15nF in [4]). This paper describes a three-stage amplifier managed to afford particularly large and wide range of C₁ (1 to 15nF) with optimized power (144 μ W) and die size (0.016mm²), being very suitable for compact LCD drivers [5] with different resolution targets. The design barriers are methodically surmounted via local feedback loop (LFL) analysis expanded from [6], which is an insightful control-centric method. Measured at 15nF C_L, the attained FOM_S (FOM_L) is >4.48× (>2.55×) beyond that of the stateof-the-art (Fig. 21.6.1).

Design of frequency compensation classically hinges on the analysis of amplifier's transfer function H(s) once a potential topology is conceived [2-4]. Yet, the involvements cannot explicitly relate the impact of each circuit element to the pole-zero composition of H(s). In contrast, the LFL analysis upgrades the entire *pole-zero placement* to a more discerning system level, as materialized in the design of two-stage amplifiers [6]. This work extends the capability of LFL analysis to handle more complex three-stage amplifiers, allowing systematic selection of frequency compensation and comparison of merits.

Figure 21.6.2 shows the topologies of the three-stage amplifier in [3], [4], and this work. The Bode plots of their LFL are depicted in Fig. 21.6.3. Essentially, if no right-half-plane (RHP) pole appears in the LFL(s) of the amplifier (normally the case), its GBW is mainly governed by the unity-gain frequency (ω_{μ}) of the dominant LFL. LFL analysis shows that the $\omega_{\mu,[3]}$ in [3] is mainly contributed by the current-buffer Miller compensation (CBMC) on the outer LFL (inner LFL with G_{ma2} shows a loop gain <1). Though the LFL stability can be assured by pushing the original g_{01}/C_{p1} -pole to a lower-frequency (g_{01}/C_1), $\omega_{\mu,[3]}$ is still limited by the g_{02}/C_{p2} -pole. This inspection explains why extra compensation (via C₁) and a low-gain G_{m2} were enforced in [3], offsetting the increment of $\omega_{\mu,[3]}$ offered by CBMC. The feedforward stage (G_{mf2}) only generates a high-frequency zero that has negligible impact to $\omega_{\mu,[3]}$.

The $\omega_{\mu,[4]}$ in [4] is obtained via single Miller compensation (SMC) and parasitic-pole cancellation. The latter is based on a passive left-half-plane (LHP) zero made by R_a and C_a to cancel the g_{01}/C_m -pole, while pushing the original g_{02}/C_{p2} -pole to a lower frequency g_{02}/C_a . The extent of $\omega_{\mu,[4]}$ is associated with G_{m2} and R_a . Enlarging the former unavoidably calls for extra power, while the latter is upper-bounded by the LFL stability (due to the $1/R_aC_{p2}$ -pole) and the criteria necessary to produce the LHP zero. Nevertheless, under the same C_L and power budget (i.e., G_{mL}), the $G_{m2}R_a$ term of $\omega_{\mu,[4]}$ can still exceed the term $(G_{m2}/g_{02})(C_m/C_1)$ in $\omega_{\mu,[3]}$, where C_m/C_1 is limited to ~2. This insight is consistent with their reported results.

Guided by those LFL analyses, this work benefits the CBMC for its high-frequency parasitic pole, while combining it with a tailored active-LHP-zero circuit for parasitic-pole cancellation. Specifically, a high-pass network (R_z , C_z and G_{mb1}) with low output impedance offers the sought LHP zero without introducing unwanted low-frequency poles, resolving the shortcoming of its passive counterpart [4]. The loop gain of the LFL compresses the pole-zero doublet so as to suppress the slow-settling component in the step response. G_{mb2} not only offers V-to-I conversion for driving G_{mL} , but also isolates V_2 and V_3 nodes to limit C_{pb}

(<<C_p_2), resulting in a high-frequency 1/R_zC_{pb}-pole. Unlike [3] and [4], $\omega_{\mu,proposed}$ is mainly limited by the G_{mb1}/C_z-pole, which sits at a much higher frequency than the g₀₂/C_{p2}-pole in [3], and the 1/R_aC_{p2}-pole in [4]. As a result, $\omega_{\mu,proposed}$ can surpass $\omega_{\mu,[3]}$ and $\omega_{\mu,[4]}$ under the same C_L and power budget.

Figure 21.6.4 depicts the circuit-level schematic of the proposed three-stage amplifier. The 1st-gain-stage G_{m1} features an input differential pair (M₁₋₂). A wideband current buffer G_{ma} (M₃₋₈ and R₁₋₂) [7] offers a low input impedance of 1/[2(g_{m5}R₁+1)g_{m8}], pushing the G_{ma}/C_m-pole to higher frequencies while averting reducing the output impedance of G_{m1} (drain of M₇ and M₈). The LFL of the current buffer features a moderate self loop gain (2g_{m5}R₁+1) to impel its own poles to high frequencies while ensuring local stability. The active LHP zero (R_z and C_z) is embodied in the 2^{md}-gain-stage G_{m2} (M₁₁₋₁₄) to spare power. G_{mb1} and G_{mb2} are realized by M₁₃ and M₁₄, respectively. M₁₂ (driven by M₉) offers a feed-forward gain enhancing the slewing performance of G_{m2}. The 3rd-gain-stage G_{mL} (M₁₅) is combined with another feedforward gain G_{mf} (M₁₆). Targeting a >1nF C_L the SR of the amplifier is dominated by the maximum dynamic current of the 3rd gain stage, which can be designed to afford a certain amount of resistive load (e.g., add 30% quiescent current for 25kΩ) without affecting other performances.

The fabricated three-stage amplifier is optimized for C_L drivability such that the power and area remain comparable with the recent works [3,4]. The measured AC and step responses are plotted in Fig. 21.6.5. C_L can be as large as 15nF with 18.1dB gain and 52.3° phase margin, and as small as 1nF with 9.8dB gain and 83.2° phase margin. The extrapolated DC gain is >100dB. At C_L=15nF, the GBW is 0.95MHz, whereas the average SR and 1% setting time (T_S) measured in unity-gain configuration are 0.22V/µs and 4.49µs, respectively. Although the measured gain (7.8dB) and phase (79.5°) margins are not inferior when C_L is reduced to 0.5nF, a small (~0.9mV_{pp}) high-frequency (~12MHz) ringing is super-imposed onto the step response, due to the LFL instability. This result is consistent with the design and simulation, giving more insight when judging the C_L variability. When C_L is further downsized to 0.1nF, both the LFL and the amplifier (in unity-gain feedback) become unstable, as two complex conjugate RHP poles have already appeared in H(s).

Figure 21.6.6 shows the performance summary. This work not only succeeds in extending the C_L-drivability to 15nF, but also shows improved FOM_S (>4.48×) and FOM_L (>2.25×), and their large-capacitive-load versions [3]: LC-FOM_S (>2.76×) and LC-FOM_L (>1.57×), with respect to the prior arts. The die occupies 0.016mm² in a 0.35µm CMOS process (Fig. 21.6.7). The robustness of the results has been confirmed through performing measurements on over 20 samples. At 15nF C_L, the σ of each key performance parameter is <13% of its mean.

Acknowledgements:

This work is partially funded by the Macao Science and Technology Development Fund – FDCT.

References:

[1] Texas Instruments, "4-Channel, Rail-to-Rail, CMOS Buffer Amplifier," Rev. B; July 2004, accessed on Dec. 8, 2011, http://www.ti.com/product/buf04701.

[2] K.N. Leung, P.K.T. Mok, W.H. Ki, and J.K.O. Sin, "Damping-Factor-Control Frequency compensation Technique for Low-Voltage Low-Power Large Capacitive Load Applications," *ISSCC Dig. Tech. Papers*, pp. 158-159, February 1999.

[3] S. Guo and H. Lee "Dual Active-Capacitive-Feedback Compensation for Low-Power Large-Capacitive-Load Three-Stage Amplifiers," *IEEE J. Solid-State Circuits*, vol. 46, no. 2, pp. 452-464, February 2011.

[4] X. Peng, W. Sansen, L. Hou, J. Wang and W. Wu "Impedance Adapting Compensation for Low-Power Multistage Amplifiers," *IEEE J. Solid-State Circuits*, vol. 46, no. 2, pp. 445-451, February 2011.

[5] C.W. Lu, P.Y. Yin, C.M. Hsiao and M.C. F. Chang "A 10b Resistor-Resistor-String DAC with Current Compensation for Compact LCD Driver ICs," *ISSCC Dig. Tech. Papers*, pp. 318-319, February 2011.

[6] K. H. Lundberg, "Internal and External Op-Amp Compensation: A Control-Centric Tutorial," *Proc. of the American Control Conference*, pp. 5197-5211, June 2004.

[7] U. Dasgupta, "Ahuja Compensation Circuit for Operational Amplifier," US Patent No. 7,646, 247, January 2010.

ISSCC 2012 / February 22, 2012 / 10:45 AM

Figure 21.6.5: AC responses (left, upper) and step responses (right) at 1 and 15nF C_L . A small C_L limits the gain margin whereas a large C_L limits the phase margin (left, lower).

Device	Size (µm/µm)	Device	Size (µm/µm)	Device	Size (µm/µm)
M_1/M_2	12/2 (x8)	M ₁₂	3/1 (x4)	M _{b2}	6/2 (x2)
M ₃ /M ₄	4/2 (x3)	M ₁₃	1.5/0.6 (x3)	Cm	1.424 pF
M ₅ /M ₆	1/0.35 (x3)	M ₁₄	1.5/0.6 (x2)	Cz	1.219 pF
M7/M8	1/0.35 (x4)	M ₁₅	1.5/0.6 (x20)	R1,R2	85.7 kΩ
M ₉ /M ₁₀	3/1 (x2)	M ₁₆	3/1 (x40)	Rz	239.9kΩ
M11	3/1 (x6)	M _{b1}	6/2		5

Figure 21.6.4: Schematic and device sizes of the proposed three-stage amplifier. The bias currents are design values.

	[3] [S. Guo JSSC Feb'11]		[4] [X. Peng JSSC Feb'11]	This Work				
Load $C_L(pF)$ [// $R_L(k\Omega)$]	500 // 25	800 // 25	150	1,000	5,000	10,000	15,000	
GBW (MHz)	4	3.6	4.4	1.37	1.24	1.06	0.95	
Phase Margin (*)	70	58	57	83.2	69.8	57.2	52.3	
Gain Margin (dB)	14 *	16*	5*	9.8	16.6	17.0	18.1	
Average SR (V/µS)	2.2	1.7	1.8	0.59	0.50	0.30	0.22	
Average 1% Ts (µS)	0.6	0.7	1.9	1.28	1.71	3.66	4.49	
DC Gain (dB) (extrapolated)	>100		110	>100				
Power (µW) @ V _{DD}	260 @ 2 V		30 @ 1.5 V	144 @ 2 V				
Total Capacitance Ct (pF)	2.2		1.6	2.6				
Chip Area (mm ²)	0.014		0.02	0.016				
Technology	0.35µm CMOS		0.35µm CMOS	0.35µm CMOS				
FOM _s [(MHz · pF)/mW]	7,692	11,077	22,000	9,514	43,056	73,889	98,656	
FOM _L [(V/µS · pF)/mW]	4,231	5,231	9,000	4,097	17,326	20,833	22,917	
LC-FOM _s (MHz/mW)	3,497	5,035	13,750	3,659	16,560	28,419	37,945	
LC-FOM _L [(V/µS)/mW]	1,923	2,378	5,625	1,576	6,664	8,013	8,814	
Typical EOM, and EOM	[3]-[4]:		Large-Capacit	ive-Load	FOM _e an	d FOM [31:	

ISSCC 2012 PAPER CONTINUATIONS

