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Abstract—Gaussian mixture model (GMM) has been considered 
to model the EEG data for the classification task in brain-
computer interface (BCI) system. In the practical BCI 
application, however, the performance of the classical GMM 
optimized by standard expectation-maximization (EM) algorithm 
may be degraded due to the noise and outliers, which often exist 
in realistic BCI systems. The motivation of this paper is to 
introduce the GMM based on the combination between the 
genetic algorithm (GA) and EM method to give a probabilistic 
output for further analysis and, more important, to achieve the 
reliable estimation by pruning the potential outliers and noisy 
samples in the EEG data, so the performance of BCI system can 
be improved. Experiments on two BCI datasets demonstrate the 
improvement in comparison with the classical mixture model. 
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I.  INTRODUCTION 
A brain-computer interface (BCI) is a system that forms a 

possible output channel for the individuals with severe motor 
disabilities to have effective control over external devices 
without using the traditional pathways as peripheral muscle or 
nerves [1–3]. The brain activities are often recorded 
noninvasively by electroencephalogram (EEG), which has 
excellent temporal resolution and usability, and the EEG 
signal is therefore a popular choice for BCI research.  

In order to control an EEG-based BCI, the user must 
produce different brain activity patterns, which are recorded 
by electrodes on the scalp, and then features are extracted 
from the EEG signals and translated into the control 
commands. In most existing BCIs, this translation relies on a 
classification algorithm [4], [5]. For a more detailed review on 
the classification technologies used in BCIs see [3–8].  

Gaussian mixture model (GMM) [17] has been applied to 
model the features extracted from the EEG signal in BCI. The 
GMM for unsupervised classification was also reported in [10]. 
In [21] and [22], the mixture of Gaussian was introduced as the 
online classifier and the parameters were updated in a 
simulated online scenario. In [9] a GMM-based classifier was 
used to separate the signal into different classes of mental task, 
where adaptation is concerned by using a supervised method. 
Each class was represented by a number of Gaussian 
prototypes, typically less than four. Similarly, [23] and [24] 

also proposed an online GMM classifier via the decorrelated 
least mean square (DLMS) algorithm. In [11] and [12] the 
GMM based on sequential expectation-maximization (SEM) 
algorithm for the unsupervised adaptation was proposed. The 
failure detection index (FDI) was introduced to detect the 
failure of the adaptation, and decide when to stop the 
adaptation, or re-train the system. An improved GMM with 
parameter initialization was also proposed to enhance the 
adaptability of the classifier for the shifts between sessions in 
[13], where the initial parameters were treated as variational, 
and determined based on historical estimation. In [14] the 
GMM was used to model the resting brain activity so that 
changes in EEG signal can be detected rather than classified. 
Therefore, the proposed method did not require extensive 
initial signal identification procedures since it only required 
prior data samples from only one class (i.e., rest), and not form 
the multiple classes (e.g., signals associated with a variety of 
different actual or imagined movements). Furthermore, this 
approach did not require prior determination of the specific 
brain activity features that best suited for communication, 
which would benefit the clinical application of BCI technology. 
On the other hand, in [15] the mental state was modeled by 
Gaussian distribution, and then the prior distribution of rest 
state was inferred and subsequently adapted during the ongoing 
use. This distance-based approach made “anything other than 
active state” detection possible and allowed the subject to find 
the way most suitable for him/her. A comparative study of 
different methods of features and classifiers, including the 
GMM classifier, for designing of subject-specific and subject-
independent BCIs was reported in [16]. 

BCI can benefit from the unsupervised learning methods, 
such as GMM, since in the practical application, the subject’s 
intention is usually unknown to the system, and the GMM can 
be trained online without any feedback and cue as the label of 
the data. In general, the parameter set of a GMM is optimized 
by expectation-maximization (EM) algorithm in a way to 
maximize the likelihood of the data given the model. However, 
the performance of the classical model optimized by standard 
EM method will be degraded due to the noise and outliers, 
which often exist in a realistic BCI system due to the factors 
such as low signal-to-noise ratio (SNR), measurement 
inaccuracies, physiological variations in background EEG, 
muscle and eyes blink artifacts. Therefore, a robust method is 
needed to reject the noisy data so that the reliable estimation 
can be achieved. 
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This paper handles the noise and outliers detection task by 
introducing a robust method which combines the genetic 
algorithm (GA) with the EM to maximize trimmed likelihood 
function [18]. The performance of this method is tested on two 
datasets, which are dataset III and IV from BCI competition 
2003. 

II. METHODS 

A. Standard EM algorithm for GMM 
A mixture model with K Gaussian densities can be defined 

as 
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which is called Gaussian mixture model (GMM). The 
parameters 1,..., kπ π are the mixture coefficients, and each 
Gaussian density ( | , )k kN x μ Σ with mean kμ and covariance 

kΣ . Being probabilities, the parameters kπ must satisfy 
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Define 1 1 1{ ,..., , ,..., , ,..., }k k kπ πΘ ≡ μ μ Σ Σ as the complete 
set of parameters needed to specify the GMM.  

Suppose there is a data set of N observations 
1{ ,..., },N=X x x and we model the data set with a GMM. 

Hence  the corresponding log-likelihood function is  
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One approach to estimate the parameter set is maximum 
likelihood (ML) 

 
ˆ arg max log ( | ){ }ML p

Θ
Θ = ΘX                      (4) 

It is well known that the closed-form solution for (4) cannot 
be found analytically. One powerful method for finding the ML 
solution is the EM algorithm [19], which comprises two 
alternate steps: the E-step which computes the posterior 
probabilities by using current estimated parameters, and the M-
step which updates the parameters using the current posterior 
probabilities. For more details on EM for GMM, as well as 
other mixture models, see [17], [19]. 

B. Maintaining the Integrity of the Specifications 
In a practical BCI system, the noise and outliers due to the 

factors such as low signal-to-noise ratio (SNR), measurement 
inaccuracies, physiological variations in background EEG, 
muscle and eyes blink artifacts often exist, which will 
definitely degrade the performance of standard EM for GMM. 
In general, if outliers exist in the data, they may pull a cluster’s 
mean estimated towards their location, while away from the 
cluster’s true center. On the other hand, they can also enlarge 
the cluster’s covariance in their direction. Therefore, the noise 
and the outliers can have two negative effects: the “masking” 
where the presence of an outlier masks the appearance of 
another one, and “swamping” which means certain non-
outlying sample maybe wrongly observed as atypical [18]. 

To handle this problem, we introduce the genetic-based 
EM, which is proposed in [18] for GMM. In this method, the 
goal is to maximize the trimmed likelihood function, which is 
also used as the fitness function for GA [20].  The definition 
of the trimmed likelihood function is  
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that nx is trimmed off the data set, otherwise, 1.nω = The 
chromosomes in the genetic population are binary vectors of 
length N, each bit of which indicated whether the sample nx is 
trimmed or not. Only the samples survived (the corresponding 
bit is 1) can contribute to the Gaussian mixture. Thus, the 
output of this method is a subset of “normal data” of size M 
and the corresponding estimated parameter set for GMM. 

Specifically, the genetic-based EM algorithm produces a 
sequence of estimates by applying the EM and GA alternately. 
In each EM step, the parameters of GMM are evaluated based 
on the selected “normal samples”, and in the GA step, the 
chromosomes are updated according to the likelihood 
contribution for the current estimated mixture model. Each pair 
of the chromosome and the corresponding mixture model will 
be a possible solution. It should be emphasized that to avoid the 
random manner in mutation process, another operator called 
guided mutation is carried to trim off the samples with small 
likelihood. Since the trimmed likelihood function is proven that 
it preserves the monotonic property of standard EM, and the 
best individuals are always unaltered to the next generation due 
to the guided mutation, the convergence of this method can be 
guaranteed. Fig. 1 and Fig. 2 show the flowchart of the guided 
mutation and genetic based EM algorithm for GMM. For more 
detailed and comprehensive accounts on the genetic-based EM 
algorithm, see [18]. 

 
 

     Figure. 1.  Flowchart of guided mutation 
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III. EXPERIMENTS 

A. Data Set 
The performance of GMM method based on genetic-based 

EM is evaluated on two datasets, which are the dataset III and 
dataset IV from BCI competition 2003 [32].  

Dataset III consists of 420 motor imagery EEG samples 
(210 left trials and 210 right trials) of 9s length, which are 
recorded from a 25 years old female during a feedback session. 
Three pairs of bipolar EEG channels (anterior ‘+’, posterior ‘-’) 
were positioned over C3, Cz and C4. It was sampled at 128 Hz 
and bandpass filtered between 0.5 and 30Hz.  

Dataset IV contains 416 finger movement trials of 500 ms 
length which are recorded from a normal subject. The task is to 
press with the index and little fingers the corresponding keys in 
a self-chosen order and timing ‘self-paced key typing’. The 
EEG was collected by 28 electrodes at the positions of the 
international 10/20-system, and the sample rate was 100Hz. 

B. Feature Extraction Methods 
Various feature extraction methods have been proposed for 

EEG analysis [25]. For the first data set, since there are only 
three channels, the power spectral density (PSD) and band 
power (BP) are used. On the other hand, common spatial 
pattern (CSP), as a technique to analyze multichannel data, is 
adopted to extract the features on the second data set.  

The PSD describe how the power (or variance) of a signal 
distributed with different frequencies, and BP is extracted in a 
given frequency band by filtering it, squaring it and average it. 
The CSP is designed based on a decomposition of the raw EEG 
signals into spatial patterns so that the variances of the resulting 
signals carry the most discriminative information [26], [27].  

C. Parameter Setting 
Some parameters for the feature extraction and 

classification algorithms are needed to be selected carefully. 
Specifically, for the first data set, the EEG signals are filtered 
by a bandpass filter (10-12 Hz), and then we calculate the PSD 
from C3 and C4 channels using periodogram within 10-12Hz. 
The length of time window for BP is 15 (≈ 117.2 ms) and the 
corresponding starting point is t = 560 (= 4.375s). For the 
second data set, the EEG signals are filtered by a zero-phase 
filter (0-7Hz). Then we apply CSP on the segment with sample 
points of 43-47 (200ms-160ms before the keypress), and only 
the first pair of the spatial filter is used. 

In this paper, since the GMM is trained in an unsupervised 
manner, the number of the Gaussian components is two, which 
equals to the number of the classes (left and right hand 
imagery/movement), otherwise the labels of the samples cannot 
be assigned and classified. For the genetic-based EM algorithm, 
there are also a few parameters need to be defined to specify 
the learning process. The maximum number of each EM cycles 
C is set to 10. The trimming level є, which is defined as M = 
(1- є) × N, is set to be 0.1, and the size of the population |P| is 8.  

IV. RESULTS 
The performances of the GMM optimized by using genetic-

based EM and standard EM algorithm, together with that of 
linear discriminant analysis (LDA), are demonstrated in Table I. 
From the table it can be found that LDA, as a supervised 
learning method, has higher accuracies than the other two 
classifiers, which is not surprising since it utilizes the 
information of the class labels.  

On the other hand, the performance of GMM optimized by 
genetic-based EM is superior to the classical GMM. The main 
reason of it, as mentioned above, may be that the outliers and 
noisy samples are trimmed off the original data by the 
introduced method, which will improve the clustering quality. 
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Figure. 2.  Flowchart of genetic-based EM for GMM 

TABLE I 
CLASSIFICATION ACCURACY (%) OF EACH CLASSIFIER 

Methods First data set  Second data set 
PSD BP 

LDA 82.3 ± 2.3 83.7 ± 3.3 83.1± 2.6 
Classical GMM 79.3 ± 1.9 80.3 ± 4.5 78.2 ± 3.2 

EM-GA based GMM 78.9 ± 2.9 81.4 ± 3.7 81.7 ± 2.8 
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This can be demonstrated in Fig. 3 and Fig. 4.  In Fig. 3, the 
training samples of the second dataset (preprocessed by 
bandpass filter and CSP) are clustered by the classical GMM 
(dash lines) and the robust method (solid lines), of which the 
centers are marked with cross and circle respectively. The 
outliers are indicated by the green panes. It can be observed 
that the covariances of the both clusters are enlarged due to the 
noisy data and outliers. In addition, the directions of the 
dispersions and the center of the cluster 2 are also drawn 
toward the noisy data. All of these factors may cause the 
negative effects on the model estimation and the further 
analysis. The similar situations can also be observed in Fig. 4, 
in which the features of training samples of the first dataset are 
extracted by BP and PSD respectively. Here the covariances of 
clusters are also be enlarged, but the centers and the directions 
of the dispersions are not changed obviously, which may 
explain to some extent why these two methods have the similar 
performances for the first data set. 

The parameters of the genetic-based EM algorithm are 
determined by experience. In particular, we found that the 
convergence of the algorithm can be guaranteed if we set C to 
be 10. Large C cannot further improve the performance but 
increase the execution time, and it is same to the size of the 
population |P|. On the other hand, the choice of the trimming 
level є can affect the classification result. Unfortunately, this 
prior knowledge is not usually available for many practical 
applications. If є is set too high, the remaining data may not be 
able to reflect the true distribution in the feature space, and too 
few data will also cause the overftting problem. Conversely, if 
є is too small, some noisy data may still degrade the 
classification performance. In our experiment, we have found 
that є ∊ [0.8, 0.9] usually provides desirable result. Since the 
noise is ubiquitous in EEG signals, we suggest that one should 
trim some training data before construct the classifier. 

V. DISCUSSION AND CONCLUSION 
A robust clustering algorithm by combining GA with EM 

for GMM was introduced in this paper. The motivation of this 
work is to reduce the negative effects caused by the noisy data.  
The experimental results demonstrate that the performance of 
the classical GMM can be improved by the introduced method.  

LDA outperforms the mixture model. However, in an 
unsupervised manner, the mixture model can reduce the 
training time since the mapping from the EEG pattern changes 
to the intention of the user can be learned online without any 
feedback [10]. If the GMM is trained in a supervised manner, 
the number of the Gaussian components should also be 
optimized by some information criterion (e.g., the Akaike 
information criterion (AIC) [28], Bayesian inference criterion 
(BIC) [29], minimum description length (MDL) [30]). In [31], 
an algorithm was proposed to select the number of the 
components and avoid the sensitivity to initialization, which 
can be used for number of Gaussian components selection.  

Adaptability of an online BCI system should also be 
considered to cope with the non-stationarity in the EEG signal 
[11–13], and how to design the adaptation strategy for GMM is 
also one step in future work. Moreover, the idea of GA can also 
be adopted to choose the subset to design a subject-independent 
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Figure. 3.  The clusters estimated by classical GMM and robust method 
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BCI, which is robust to the variance between different BCI 
users, so that the users could start real-time BCI use without 
any prior calibration. 
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