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Abstract— This paper reports a wideband inductorless auto-
matic gain control (AGC) amplifier for wireline applications.
To realize a dB-linear AGC range, a pseudo-folded Gilbert cell
driven by a single-branch negative exponential generator (NEG)
is proposed as the core variable-gain amplifier. The NEG features
a composite of dual Taylor series to extend the AGC approxima-
tion range without sacrificing the precision. Fabricated in 65-nm
CMOS, the AGC amplifier occupies a tiny die area of 0.045 mm2

and consumes 28 mW at 1.2 V. Measured over a dB-linear gain
range of ∼40 dB, < ± 1 dB gain error is achieved and the
3-dB bandwidth stays roughly constant at 7 GHz. For the closed-
loop AGC measurement, the input dynamic range is ∼40 dB
(10 mVpp to 1 Vpp) for a BER <10−12 under a 27 − 1 PRBS
data at 10 Gb/s. The achieved figure-of-merit (FOM) of 2.8 pJ/bit
compares favorably with state-of-the-art.

Index Terms— Automatic gain control (AGC) amplifier,
negative exponential generator (NEG), dB-linear, CMOS, Taylor
series, dynamic range, rational approximation, pseudo-
exponential function, bipolar junction transistors (BJTs).

I. INTRODUCTION

FOR various wireline channels in the flexible-reach wire-
line [1] and optical [2] receivers, an automatic gain

control (AGC) amplifier plays a key role to accommodate
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the input-swing variation at the analog front-end. In addition
to the obvious goals of low power, compactness and
wide bandwidth (BW), the desired AGC amplifier should
support a wide input dynamic range while preserving a con-
stant BW. The dB-linear gain characteristic can be provided
by an exponential generator, which converts the control signal
from linear to exponential. Although such feature can be
obtained from the intrinsic exponential relationship (ex) of
BJT [3] in BiCMOS, parasitic BJT [4], or subthreshold-biased
MOSFET [5] in CMOS, they are not favored for their limited
input swing, speed and matching accuracy, as well as large
noise contribution [4].

With the absence of effective ex in CMOS, recent
works [6]–[9] focus on multi-function approximation to extend
the finite range of the exponential feature with an acceptable
gain error. One possible way to fulfill it is to incorporate
switching circuits as part of the exponential generator, while
choosing the corresponding numerator and denominator of the
rational equation for different control regions [7]–[9]. This
approach, however, increases the complexity of the exponential
generator, and introduces unreliability and errors into the loop.
As a result, in [9], the input dynamic range is limited to 24 dB
over a 40-dB linear AGC range.

This paper introduces a circuit technique to approximate the
exponential function with a single-branch negative exponential
generator (NEG), where different operating regions of the
MOSFETs are fully utilized, such that a wide dB-linear
AGC range can be achieved with minimum hardware. Fab-
ricated in 65-nm CMOS, the inductorless AGC amplifier
with the proposed NEG exhibits an input dynamic range
of ∼40 dB for a BER <10−12 while amplifying a 10-Gb/s
PRBS data input with <±1 dB gain error. The power
consumption is 28 mW at 1.2 V, and the active area is
just 0.045 mm2.

This paper is organized as follows: Section II overviews
the existing ex approximation and implementation techniques.
The mathematical mechanism and implementation of the NEG
are detailed in Section III. Section IV describes the complete
AGC amplifier. The measurement results are summarized in
Section V, and finally the conclusions are drawn in Section VI.
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TABLE I

SUMMERY OF THE EXISTING AND PROPOSED EXPONENTIAL GENERATOR TOPOLOGIES

II. OVERVIEW OF ex APPROXIMATION

AND IMPLEMENTATION

This section briefly reviews the existing ex approximation
and implementation techniques in CMOS technologies. Due
to the absence of intrinsic ex CMOS devices operating in
the saturation region, one possible way to generate it is to
use a pseudo-exponential generator [10], [11]. The pseudo-
exponential function (Table I) offers an accurate approxima-
tion of ≤ 5.5% error with −0.85 < x < 0.83, or ≤1 dB
error with an x range of 2.1. For the conventional designs
[10], [11], the input differential pair and diode-connected load
pair share a constant current, so that the resultant exponential
approximation term is under a square root. Consequently,
the tuning range is limited to half of the available range.
Although cascading two such stages can double the tuning
range, it implies extra power and area. The BW limit and vari-
ation under different gain settings are also matters of concern,
as parasitic capacitances are accumulated at the output node.

Alternatively, the 2nd-order Taylor series expansion
[12]–[14] can also be used for ex approximation (Table I).
Theoretically, the approximation error is ≤5.5% for −0.6 <
x < 0.85, or ≤1 dB error with an x range of 1.9.
Its voltage-mode implementation, however, suffers from severe
nonlinearity due to the mobility degradation and mismatch
effect (especially for short-channel devices), while the con-
straint on the operating region also limits its approximation
range [12]. On the other hand, the current-mode imple-
mentations [12], [13] usually require a number of current
mirrors, multipliers or squarers, demanding ∼20 MOSFETs.

Practically, a V-I converter is required to generate a linear
current output with respect to the input control voltage, which
is then injected to the current square circuit to create the
2nd-order term [14]. The resultant current is then summed
by a certain dc current and used to control the linear VGA
blocks. Because a total of 25 devices (Table I) are involved
to achieve an overall exponential current, the chip area and
power consumption are penalized.

Driven by the limited accuracy (x range <2) of the above
single piece approximation functions, other works employing
multi-function approximation have also been reported [6]–[9],
in order to enlarge the approximation range to approach the
ideal ex [4]. A new approximation function based on the limit
definition of the exponential function (Table I) was proposed
in [6]. Three identical stages are cascaded to verify the idea,
each of which uses two parallel transistors with different
oxide thickness and sizes, as the source-degeneration resistors
to realize dB-linear gain control. As a result, both gain-
variation range and gain error (< ± 0.5 dB) are improved.
Nevertheless, its BW limitation resulting from the parasitic
capacitance is severe, while non-standard CMOS process exac-
erbates the cost of implementation. The pseudo-exponential
function can be further extended to complicated rational
approximations [7]–[9], which are shifted and scaled to the
adjacent regions to fit the same exponential curve. The accu-
rate x range is extended to >4, but it demands extra blocks
such as a current-ratio generator and switching logics, resulting
in an increase of hardware to >80 devices (Table I), and even
instability of the AGC loop.
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III. PROPOSED NEGATIVE EXPONENTIAL

GENERATION (NEG)

Although combined approximation functions, and succes-
sive approximation by shifting and scaling, work effectively
to enlarge the dB-linear gain range, this work aims to design a
simple circuit without compromise on the gain variation range,
and yet being dB-linear-accurate by taking the advantage of
dynamic operating regions of the MOSFETs.

A. Mathematical Approximation

The proposed negative exponential approximation is based
on the following general function gn (x),

gn (x) = an + bnx + cn

√
dn + enx + fn x2 (1)

where x is an independent variable, and coefficients an to fn

are determined by the following calculations in Section III-B.
At x = 0, the Taylor series expansion up to the 2nd-order is
used for the last term in (1) leading to

√
dn + en x + fn x2 ≈ √

dn + en

2
√

dn
x + dn fn − e2

n
4

2d
3
2

n

x2 (2)

Thus, we can rearrange (1) as

gn (x) ≈
(

an + cn
√

dn

)
+ (bn + cnen

2
√

dn
)x + cn

dn fn − e2
n
4

2d
3
2
n

x2

= On + Pn x + Qn x2 (3)

Assuming −Pn/On = √
2Qn/On = Kn , where Pn < 0,

the proposed exponential approximation is expressed as

gn (x) ≈ One−Kn x (4)

To give a fair mathematical comparison in Table I, equation (1)
is normalized to

Gn (x) = An + Bnx + Cn

√
Dn + Enx + Fn x2 ≈ e−x (5)

where An to Fn are the normalized coefficients. Thereafter,
by adjusting the different groups of the normalized coefficients
(A1 to F1) and (A2 to F2), one concave function G1 (x)
and the other convex function G2 (x) can be obtained to
approximate the same ideal e−x around the origin [Fig. 1(a)].
Their approximation regions may vary slightly, but both
approximation errors decrease as x approaches “0”.

To increase both the available control input and the
dB-linear gain range, two shifted single functions, G1s (x) and
G2s (x), are combined as a dual Taylor series approximation
at the reference point [x = 0 in Fig. 1(b)]. We shift G1 (x)
toward the −x direction by an amount equal to �X1, and then
move upward G1 (x + �X1) by �Y1 in y direction. G1s (x) is
achieved and plotted in Fig. 1(b), which remains the concave
feature over region I. Inversely, G2 (x) is shifted by �X2 in
+x direction, and G2 (x + �X2) is moved down by �Y2 verti-
cally. We obtain G2s (x) [Fig. 1(b)] which is a convex function
over region II. The Taylor series of G1s (x) and G2s (x) are
both parallel with the ideal exponential line [Fig. 1(b)], and
the entire curve that we proposed is constructed within a
certain gain error, called an “inverse S-shaped curve”, which
is optimized by the following transistorized implementation.

Fig. 1. The mathematical steps of the proposed negative exponential
approximation: (a) single-function generation and (b) combined response of
the two single-function approximations.

B. Circuit Implementation

Figure 2(a) describes the schematic of the proposed NEG,
consisting of only three MOSFETs, which realizes a dB-linear
characteristic between the differential control voltage (Vyx =
Vy − Vx ) and the single-ended control input voltage (Vctrl).
As Vctrl increases to the transition voltage (Vm), the bias
transistor (M1), whose gate voltage is fixed, is maintained
in triode-region operation, while the control transistor (M2)
enters the saturation region [Fig. 2(b)]. We define this oper-
ating condition as “region I”. When Vctrl is continually
increased beyond Vm , namely “region II”, M1 enters into the
saturation region and M2 switches to the triode region. In both
regions I and II, the diode-connected transistor (M3) remains
in the saturation region. Interestingly, a transition between
regions I and II exists around Vm , i.e. “region III”, where both
M1 and M2 are operated in the saturation region. As such,
the relation between Vyx and Vctrl is purely linear, instead of
dB-linear. Thus, we should avoid the occurrence of region III,
or narrow it. Assuming M1 switches from triode region to
saturation at a control voltage Vctrl1, while M2 switches from
saturation region to triode at another control voltage Vctrl2,
at the point of switching, we have

VDS1 = VGS1 − VT H1 ⇒ Vx = Vbias − VT H1 (6)

VDS2 = VGS2 − VT H2 ⇒ Vy = Vctrl2 − VT H2 (7)

where VDSx , VGSx and VT H x are the drain-source volt-
age, gate-source voltage and threshold voltage of transistors,
respectively. Fig. 2(c) introduces the optimization procedure of
eliminating region III [16]. If Vbias is increased, the current
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Fig. 2. (a) Schematic of the proposed NEG. (b) The different operating regions of (a). (c) Optimization procedure of eliminating region III. (d) Simulated
and calculated (Vyx ) curves versus Vctrl . (e) Simulated and calculated gain errors versus Vctrl .

flowing through the NEG is increased, leading to a decrease
of Vy . According to (7), Vctrl2 shall have a lower value and
move towards left in Fig. 2(b). On the other hand, Vx is
also increased with Vbias given by (6), together with the
decrease in Vy , resulting in a drop of the drain-source voltage
across M2. The gate-source voltage of M2, therefore, must
be larger to produce the increased current, indicating a right
shift of Vctrl1 in Fig. 2(b). Increasing the aspect ratio of each
transistor has the same effect in a similar manner, since it
also increases the current flowing through this single-branch
in the NEG, making the switching behavior of M1 to occur
later while M2 sooner. The simulated inverse S-shaped curve,
which is the composite of dual Taylor series, approximates the
ideal exponential line and the gain error is <±1 dB, as plotted
in Fig. 2(d) and (e), respectively.

We start to derive the relation between Vyx and Vctrl for
both regions I and II, recurring to the basic I-V characteristics
of MOSFETs in different operating regions. In region I, the
I-V equations of Mi (i = 1, 2 and 3) are given by

Id11 = K1

[
(Vbias − Vth1) · Vx − 1

2
V 2

x

]
(8)

Id21 = α1 K2
(
Vctrl − Vx − Vth f + β1Vth2

)2
(9)

Id31 = 1

2
K3

(
VD D − Vy − |Vth3|

)2 (10)

where Ki = μni Coxi Wi/Li and Vth f = Vth2 + kVx is
the threshold voltage with substrate bias present. μni is the
charge-carrier effective mobility; Coxi is the gate oxide

capacitance per unit area; Wi/Li is the aspect ratio of Mi
and Vthi is the zero-VS B value of threshold voltage of the
ith MOSFET. The body effect parameter (k) of 0.09 is
extracted from the simulation. α1 and β1 are the corrected
coefficients in the proposed corrected equation (9) compared
with the traditional square-law model in the saturation region
[15, eq. (2.13)]. If Id11 = Id21 = Id31, we achieve

Vyx I = a1 + b1x1 + c1

√
d1 + e1x1 + f1x2

1 (11)

The coefficients and x1 of (11) are derived as⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = VD D − |Vth3| +
(

m
√

K �
2/K3 − 1

)
(Vbias − Vth1)

1 + m2
(
K �

2/K1
)

−
√

K �
2/K3 + m

(
K �

2/K1
)

1 + m2
(
K �

2/K1
) V01

b1 = −
√

K �
2/K3 + m

(
K �

2/K1
)

1 + m2
(
K �

2/K1
)

c1 = −
m

√
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2/K3 − 1

1 + m2
(
K �

2/K1
)

d1 = (Vbias − Vth1)
2 + 2m

(
K �

2/K1
)
(Vbias − Vth1) V01

− (
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2/K1
)

V 2
01

e1 = 2m
(
K �

2/K1
)
(Vbias − Vth1) − 2

(
K �

2/K1
)

V01

f1 = −K �
2/K1

x1 = Vctrl − (1 − β1) Vth2 − V01

(12)
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where K �
2 = α1 K2 and m = 1 + k = 1.09. To precisely fit

the simulated I-V curve of M2 in the saturation, the corrected
coefficients (α1 and β1) are found to be 0.25 and 0.28, respec-
tively. V01 is a purely-mathematical coefficient for shifting the
single point on the calcualted result [equation (11)], where the
Taylor series is conducted in region I. The calculated value
of (11) and its corresponding gain error in region I are plotted
in Fig. 2(d) and (e). At Vctrl = 0.59(x1 = 0), we expand (11)
to approximate O1e−K1x1 by the 2nd-order Taylor series.

In region II, the I-V equations of Mi (i = 1, 2 and 3) are
given by

Id12 = 1

2
K1 (Vbias − Vth1)

2 (13)

Id22 = α2 K2

[
β2

(
Vctrl − Vx − Vth f + γ Vth2

) (
Vy − Vx

)

− 1

2

(
Vy − Vx

)2
]

(14)

Id32 = 1

2
K3

(
VD D − Vy − |Vth3|

)2 (15)

where α2, β2 and γ are the corrected coefficients in the
proposed corrected equation (14) compared with the tradi-
tional model in the triode region [15, eq. (2.8)]. Setting
Id12 = Id22 = Id32, we obtain

Vyx I I = a2 + b2x2 + c2

√
d2 + e2x2 + f2x2

2 (16)

where⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = − β2

2β2 (k + 1) − 1

[
V02 − (1 − γ ) Vth2

− (k + 1) Vy
]

b2 = − β2

2β2 (k + 1) − 1
c2 = 1

d2 = 2Id1

α2 K2 [2β2 (k + 1) − 1]

+
(

β2

2β2 (k + 1) − 1

[
V02 − (1 − γ ) Vth2

− (k + 1) Vy
])2

e2 = 2β2
2

[2β2 (k + 1) − 1]2

[
V02 − (1 − γ ) Vth2

− (k + 1) Vy
]

f2 = β2
2

[2β2 (k + 1) − 1]2

x2 = Vctrl − V02

(17)

To precisely fit the simulated I-V curve of M2 in the triode
region, the corrected coefficients (α2, β2 and γ ) are found to be
0.77, 0.97 and 0.16, respectively. V02 is a purely-mathematical
coefficient for shifting the single point on the calculated result
[eq. (16)], where the Taylor series is conducted in region II.
Again, as shown in Fig. 2(d) and (e), the calculated Vyx I I

and gain error in region II, together with the calculated results
in region I, match with the simulated inverse S-shaped curve.
By using the 2nd-order Taylor series, equation (16) is expanded
to approximate O2e−K2x2 at Vctrl = 0.85 (x2 = 0) .To guar-
antee the parallel relationship between the two Taylor series

Fig. 3. Different gain errors versus x range.

TABLE II

COEFFCIENTS OF Gn(x)

approximation lines [dash lines in Fig. 2(d)], K1 = K 2 must be
satisfied. Given different requirments of gain errors, the slope
of the ideal line varies, and the same goes with K1 and K2,
as shown in Fig. 3. If a more precise approximation is
desired, the slope of these lines must be steeper while each
approximation region is closer to the center. For instance,
if the gain error is desired to be reduced from 1 dB to 5.5%,
as quoted in Table I, the ideal line is rotated clockwise with
its slope changed from K1dB to K5p5. The dual Taylor seires
approximation lines, therefore, must be altered accordingly
(from blue to red as illustrated in Fig. 3), leading to a narrower
deviation from the one-piece ideal line, as well as a reduction
of maximum gain error from GE1dB to GE5p5. To achieve this
movement, x1 (V01) and x2 (V02), at which points the Taylor
series is expanded for each region, need to be moved towards
the center, indicated by the arrow in Fig. 3.

To compare fairly with the prior exponential approximations
in Table I, two equations (11) and (16) are normalized to (5).
The two groups of the coefficients (A1 to F1) and (A2 to F2)
in G1 (x) and G2 (x) are listed in Table II. To get the x ranges
under the different gain errors, the shifting and scaling behav-
iors of G1 (x) and G2 (x) observed in Fig. 1 are repeated.
We preset the gain error of ≤5.5%, with horizontal shift
and vertical scale values (�X1,�Y1) and (�X2,�Y2) being
(0.42, 4.117) and (0.44, 4.328), respectively. An overall x
range of 2.27 (−1.15 to 1.12) is achieved (Table I). The move-
ment values (�X1,�Y1) = (0.72, 7.257) and (�X2,�Y2) =
(0.67, 6.807) will restrict the relative gain error at the origin
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Fig. 4. Proposed complete AGC amplifier.

below 1 dB, and therefore yield an x range of 3.53 (−1.85 to
1.67) in Table I. Within a certain gain error, the available
x range and dB-linear gain range are extended effectively due
to the combination of the concave and convex functions.

IV. COMPLETE AGC AMPLIFIER

Figure 4 depicts the complete AGC amplifier including
a feedforward VGA, a NEG and a feedback control loop.
The VGA stage whose gain is controlled by a pre-distorted
signal (Vctrl) provides a constant output swing (VV G A) for
the following stages. The signal is then amplified to a desired
amplitude by the post-amplifiers (PAs). Non-linearity and
saturation must be minimized in order to fulfill the purpose of
an AGC amplifier. The BW is another challenge of the PAs
since any BW limitation brings inter-symbol interference and
data-dependent jitter [17], [18]. A driver is built at the end of
the AGC amplifier to drive the 50-� input impedance of the
equipment.

The feedback control loop senses VP A by a peak detec-
tor (PD), and compares its output (VP D) with a predefined
reference voltage (VRE F ). The difference is then amplified and
accumulated by the off-chip capacitor to generate the control
voltage (Vctrl), which is fed to the NEG to complete the loop.
The charging and discharging process of the capacitor will
only stop itself when the output of peak detector is identical
to the reference voltage, leading to a constant output power
regardless of the incoming signal strength.

A. VGA

Figure 5(a) depicts the schematic of VGA which is con-
nected to the NEG. A pseudo-folded Gilbert cell is introduced
to further reduce the number of devices. Two single branches
(M4-M7) work as level shifters, transferring the exponential
relationship from Vyx to (Vcpn = Vcp − Vcn), and then
controlling the gain cell. Because all transistors work in the
saturation region, we have

Vcp,cn = √
2I6,7/K6,7 + Vth6,7 (18)

where

I6,7 = I4,5 = 1

2
K4,5

(∣∣Vx,y − V DD
∣∣ − ∣∣Vth4,5

∣∣)2
(19)

Fig. 5. (a) Pseudo-folded Gilbert cell. (b) The differential control voltages
(Vyx and Vcpn) versus Vctrl.

Since the two branches are identical to each other, it becomes

Vcpn = √
K4,5/K6,7Vyx (20)

If converted to the logarithm domain, i.e.

Vcpn,d B = 20 log
√

K4,5/K6,7 + Vyx,d B (21)

which indicates that Vcpn,d B persists a constant difference from
Vyx,d B and varies linearly with respect to Vctrl in dB scale,
as shown in Fig. 5(b).

The gain of the VGA cell is given by

Av = − (gm10 − gm11) RL (22)

where

gm10,11 =
√

1

2
K10,11K8,9

(
Vcn,cp − Vth8,9

)
(23)

Therefore,

Av =
√

1

2
K10,11K8,9 RL Vcpn (24)

The above equation (24) proves a linear tranfer between the
voltage difference in the current tails and the differentail gain
of the VGA. From equations (20) and (24), it is obvious that
the gain of the amplifier varies linearly with Vyx . Given that
Vyx changes exponentially, the gain of the amplifier follows
the same equation. Moreover, since small changes are observed
in the total current of M8 and M9, the impact on the output
common-mode voltage is negligible even with the untilization
of a pseudo-folded Gilbert cell. By cascading two identical
gain cells, a doubled gain variation range of more than 40 dB
could be achieved.



3202 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 10, OCTOBER 2018

Fig. 6. Simulation results versus Vctrl under different process corners and temperatures: (a) Vyx (Vyx in Fig. 2) showing dB-linearity, (b) gain error
of (a), (c) GVGA (at VV G A in Fig. 4) showing dB-linearity and (d) gain error of (c). Simulation results versus temperature under different process corners:
(e) dynamic range of Vctrl and (f) dB-linear range of GVGA with ±1 dB gain error.

B. Post Amplifier (PA)
Since the VGA stage cannot provide an adequate gain with-

out degrading its BW, the PAs are cascaded to raise the total
gain by a fixed value under different gain settings. The PAs
consist of eight identical cells as a compromise among gain,
BW and power consumption. Each cell adopts a common-
source amplifier with RC-degeneration. Capacitive degenera-
tion helps increasing the effective transconductance (Gm) of
the differential pair at high frequencies, to compensate the gain
roll-off resulting from the pole at the output node, while the
linearity of the amplifier is improved by resistive degeneration.

With the same effect on gain reduction as decreasing the load
resistance, the input capacitance of a single cell is neutralized
by the degenerated capacitor, thereby making cascading multi-
ple stages possible. Furthermore, an active feedback topology
is employed to enlarge BW. The feedback factor is chosen
such that peaking is well controlled at high frequency range.
DC-offset cancellation (DCOC) shown in Fig. 4 is imple-
mented as a low-pass filter followed by a Gm stage, main-
taining the lower cut-off frequency below 150 kHz to avoid
any dc wandering. The overall PA consumes 20 mW of power
and provides a gain of 23 dB up to 10 GHz.
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Fig. 7. Monte-Carlo simulation results versus Vctrl : (a) gain error of VV G A
and (b) maximum dB-linear error histogram (100 Monte-Carlo simulation
results).

Fig. 8. Simulated compression behavior of the AGC amplifier under
different Vctrl. A data rate of 10-Gb/s 27 − 1 PRBS signal is used as input.

C. Feedback Control Loop

To establish a feedback control voltage that forces the final
output swing of the PAs equal to a fixed value, this output
swing must be detected and monitored, thereby adjusting the
gain of VGA accordingly. A source-coupled pair is utilized as
a PD since its drain voltage increases almost linearly with the
input swing. After smoothing by the low pass filter, VP D is
compared with VRE F , which is set according to the transfer
characteristic of the PD. The difference is amplified by an
integrator, leading to a charge or discharge of the capacitor.
Cross-coupled regenerative load in the integrator is designed
to reduce the comparison error and possess a fast transition.

Fig. 9. Die photo of the AGC amplifier (left), and its zoomed-in layout
(right).

Fig. 10. (a) Measured frequency response of the VGA. (b) Measured gain
and dB-linear error versus control voltage (Vctrl ) at 300 MHz in (a).

The capacitor accumulates the error until the output of PD is
identical to VRE F , and stores the correct voltage to control
the NEG.

D. Simulation Results

To evaluate the robustness of the NEG and VGA, their
performance under various process corners and temperatures
are simulated. By applying a properly-designed constant-Gm

biasing to the bias transistor of the NEG, it is verified that the
dB-linear characteristic is well maintained. Figs. 6(a) and (b)
plot the simulated dB-linear performance and dB-linear gain
error of the NEG, respectively, under typical condition
and worst case scenarios. The same variation range from
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Fig. 11. (a) Measured BER versus input swing rate under 10-Gb/s,
PRBS 27 − 1 input. (b) Measured peak-to-peak jitter versus data.

−5.5 to −25.5 dB can be achieved with a shifted control
range and the worst gain error is kept ∼1 dB. Together
with the VGA, the dB-linear gain characteristic (GVGA) and
gain error are plotted in Fig. 6(c) and (d), respectively, with
the same operating conditions as the NEG. It is found that
deviations exist among different scenarios, which may result
from the variation of absolute gain provided by the Gilbert
cells. Nevertheless, a dB-linear gain range of 40 dB is still
achievable under all operating conditions, with a maximum
gain error ∼1.6 dB. It is worth to note that the inverse
S-shape of the gain curves under different scenarios are
well maintained, half of which are convex while the other
half are concave. This can also be proven from the gain
error curves, where three intercept points exists between each
simulation line and its corresponding idea line, indicating the
homogeneous effect on both region I and region II. Impacts
on dynamic range of Vctrl and dB-linear range of GVGA over
temperature (°C) are ploted in Fig. 6(e) and (f). The deviations
under different temperatures and process corners are within
acceptable ranges.

Monte-Carlo simulation is conducted to further verify the
effect of process variation and mismatch. Figs. 7(a) and (b)
present the gain curves and maximum dB-linear gain errors
distribution for 100 Monte-Carlo simulations, respectively. The
standard deviation of the gain curves is found to be 1.55; the
mean value of the maximum dB-linear gain error is 0.97 with
a standard deviation of 0.35.

TABLE III

PERFORMANCE SUMMARY AND BENCHMARK
WITH THE STATE-OF-THE-ART

The dynamic range of the AGC amplifier is determined
not only by the gain variation range, but also the inband
input-referred noise (IRN) and P1dB. The IRN is found to
be 4.26 nV/

√
Hz when the overall gain is equal to 30 dB at

Vctrl = 250mV . The linearity of the AGC amplifier under dif-
ferent gain settings is studied by using pseudo-random binary
sequence (PRBS) input in the time domain [18], as shown in
Fig. 8. When the amplifier provides a high gain, saturation
occurs at the output nodes. In contrast, input saturation occurs
first when the gain is low and input signal is large. By choosing
a modearate level of the desired VP D , which is around -6 dBm
in our case, an extended dynamic range can be achieved.
As a result, linear amplification is provided over most of the
operating range and the VGA acts as a limiting amplifier when
saturated.

V. MEASUREMENT RESULTS

The complete AGC amplifier (Fig. 4) was fabricated
in 65-nm CMOS. The die photograph (Fig. 9) shows a tiny
active area of 0.045 mm2 by avoiding any passive induc-
tors. The prototype excluding the driver (Fig. 4) consumes
28 mW at 1.2 V. The frequency response [Fig. 10(a)] under
various control voltages is measured by the Keysight Network
Analyzer (N5247A), indicating a flat in-band gain and a
constant 3-dB BW of ∼7 GHz. The total gain range is 57 dB
(−26 to 31 dB). Fig. 10(b) shows that the dB-linear range
is 40 dB, with ±1 dB gain error when the control voltage
Vctrl is varied from 0.5 to 1 V. The measured gain error of the
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inverse S-shaped curve is consistent with that of the calculated
[Fig. 1(b)] and simulated [Fig. 2(e)] results.

The time-domain AGC closed-loop measurement was con-
ducted using the Agilent Pattern Generator (J-BERT N4903B)
and the Keysight real-time Oscilloscope (DSO91304-A).
Fig. 11(a) plots the measured bit error rate (BER) for different
input swings under a 10-Gb/s PRBS input of 27 − 1. When
the output swing of the overall PA is set at 300 mVpp,
the minimum input sensitivity and the input overload swing
at BER of 10−12 are 10 mVpp and 1 Vpp, respectively.
Thus, the input dynamic range is 40 dB at BER of <10−12.
The measured peak-to-peak jitters [Fig. 11(b)] are <22.9 ps
for 1 Vpp input swing, and <37.1 ps for 10 mVpp input swing
covering the data rate from 4 to 12 Gb/s, respectively.

Table III shows the performance summary and benchmarks
this work with the similar prior works operating at the 10-Gb/s
data rate [4], [7].

VI. CONCLUSIONS

A wideband inductorless dB-linear AGC amplifier with
a novel technique to approximate the exponential function
has been introduced. The architecture realizes multi-function
approximation without any extra control circuitry such as
switching circuits. The performance is verified by prototyping
a 10-Gb/s AGC amplifier utilizing the proposed NEG as the
VGA control. Fabricated in 65-nm CMOS, a dB-linear gain
variation range of 40 dB is achieved, with an acceptable
gain error of < ± 1 dB, while the entire gain tuning range
is up to 57 dB. The AGC provides a wide dynamic range
of 40 dB, with a BER <10−12 and a worst-case peak-to-
peak jitter of 37.1 ps. Taking into consideration the high
energy efficiency and small chip area, our AGC amplifier
demonstrates its suitability for low-cost high-speed wireline
applications.
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