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Abstract—This paper proposes a FPAA-FPGA/DSP-based
mixed signal controller that achieves superior performance when
compared with conventional digital controllers in power quality
compensation. This includes adaptive signal conditioning and pro-
grammability on-the-fly, higher flexibility, parallel computation
capability, and easy implementation. In practical applications, the
power quality compensator may suffer from poor compensation
performance, particularly during light loading. The adaptive sig-
nal gain and programmable on-the-fly functions of the mixed signal
controller are intended to improve the system compensation per-
formance, which cannot be achieved by using conventional digital
controllers alone. In this study, an approximate total harmonic dis-
tortion (ATHD) is proposed to determine the total harmonic distor-
tion value more quickly, reducing the evaluation time of the power
quality compensation system performance. With hysteresis pulse
width modulations, when the hysteresis error margin is designed,
the ATHD can be determined instantaneously. Finally, representa-
tive simulation and experimental results of a three-phase four-wire
center-split hybrid active power filter are presented. These verify
the validity and effectiveness of the proposed mixed signal con-
troller in improving current quality compensation performance
during light load conditions, compared with a conventional digital
controller.

Index Terms—Converters, power conditioning, power quality,
power system harmonics, reactive power.

I. INTRODUCTION

IN modern electric appliances, the loads are normally non-
linear, inductive, and unbalanced, which can cause power
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quality issues. These can increase transmission losses but are
also harmful to electrical and electronic devices, affecting reli-
ability, safety, and lifecycles. Power quality compensators have
developed from capacitive banks, passive power filters (PPFs),
and active power filters (APFs) into hybrid active power fil-
ters (HAPFs) to address these problems. Moreover, the devel-
opment trend changes from static operations into dynamic re-
sponses, according to the change of system loading. Different
control strategies have been proposed and developed; for exam-
ple, from periodical root mean square (rms) values into instanta-
neous active and reactive power (pq) theories, from 2-D into 3-D
pulse width modulations (PWMs), and from time-domain hys-
teresis controls into space-vector domain modulations. These
algorithms have been proposed to improve the compensation
performance of power quality compensators, by increasing re-
sponse speed and reducing the total harmonic distortion (THD).
The existing power quality compensators usually execute the
compensation control algorithm using a digital controller. In
this study, we propose to combine the control algorithm with
the advantages of adaptive controller hardware supported by a
mixed signal controller, to achieve better compensation perfor-
mance. This cannot be achieved by using a digital controller
alone. Currently, when compensator performance does not sat-
isfy international standards, other PWMs can be selected, or
the dc-link voltage can be increased. However, it may be the
case that neither of these methods will improve compensator
performance during light loading due to the low resolution of
the input signals compared with the error signal and the PWM
error margin. The design of digital controllers is usually based
on a full loading situation. The full analog-to-digital conversion
input signal range of a digital controller is, therefore, utilized
to avoid analog signal saturation. In a light load situation, the
digital controller may suffer from the problem of low resolu-
tion, which significantly affects its compensation performance.
There is presently no achievable control strategy to deal with
power quality compensation issues during light loading.

Table I summarizes the comparison and development timeline
of traditional analog controllers, programmable logic controllers
(PLC), microprocessors, digital signal processors (DSP), field
programmable gate arrays (FPGA), and field programmable
analog arrays (FPAA) [1]–[13]. The DSP/FPGA is shown to
have superior performance with high computational ability and
complexity, while FPAAs show remarkable improvements in

0885-8993 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



WONG et al.: SELF-RECONFIGURATION PROPERTY OF A MIXED SIGNAL CONTROLLER FOR IMPROVING POWER QUALITY COMPENSATION 5939

TABLE I
COMPARISON OF DIFFERENT CONTROLLERS [1]–[13]

Analog
Controller

PLC Micro
processor

DSP FPGA FPAA

Development
Timeline [1]–[6]

Before
1960s

1960s 1970s 1970s 1980s 1990s

Flexibility and
Reconfiguration
[7]–[10], [12], [13]

+ ++ +++ ++++ ++++ ++++

Computation Ability
and Complexity [7]

+ ++ +++ ++++ +++ ++

Parallelism [7] +++ + + ++ ++++ ++++
Quick and Easy
Implementation [8],
[9]

+ ++ ++ ++ +++ ++++

Programmability
on-the-Fly [9], [11]

+ ++ ++ ++ +++ ++++

Bandwidth [7] ++++ + ++ +++ +++ ++++
Accuracy [8], [9] ++++ + ++ +++ +++ ++++
Electro-Magnetic
Compatibility [8], [9]

+ ++ +++ +++ +++ ++++

High Speed ++++ + ++ +++ ++++ ++++
Low Power [9]–[11] + + ++ ++ +++ ++++

analog-related factors, such as better bandwidth, higher accu-
racy, on-the-fly programmability, and easier implementation.
Recently, FPGAs have become more popular controllers than
DSPs due to their parallelism properties and easy implemen-
tation [7]. However, the use of digital controllers alone is not
sufficient to further improve system performance, such as the
adaptive signal conditioning and on-the-fly programmability
discussed here.

Based on the literature review, papers [14]–[18] are related to
mixed signal controller researches. Girardey et al., [14] focuses
on control redundancy, with dynamic reconfiguration for sys-
tem failure, and self-healing properties for safety concerns. In
[15], the mixed signal controller combines three control loops:
An analog nonlinear current loop, a digital linear voltage loop,
and a digital frequency loop, to eliminate the sampling delay
associated with conventional digital controllers and improve the
transient response performance, whereas the fast nonlinear loop
is built with simple analog hardware. In [16], the operation of
the flyback-transformer-based buck converter is governed by
a modified mixed signal controller, which provides minimum
voltage deviation and seamless transitions between the modes.
However, the mixed signal controllers in [15] and [16] do not ad-
dress the advantages of using both analog and digital signal pro-
cessing. In [17], a mixed-signal fixed frequency voltage-mode
controller for dc–dc converters is proposed, where the deriva-
tive part of a proportional-integral-derivative (PID) regulator is
maintained in the analog domain. Finally, the derivative action
of the PID controller is inherently obtained by a combination
of the analog front-end and the hard-wired digital logic, reduc-
ing sampling effects and control delays. This feature enables
high dynamic performance, improving the bandwidth limita-
tion of a conventional digital control solution. The development
of alternative digital (or mixed signal) control architectures po-
tentially enables simpler control architecture and faster dynamic
response. In [18], a combined FPAA-FPGA/DSP platform is dis-

Fig. 1. Proposed mixed signal controller.

cussed, focusing on rapid prototyping and the need for stringent
time-to-market constraints. In summary, the applications of the
mixed signal controller at present are primarily for:

1) reducing the computation burden through a digital con-
troller;

2) enhancing the parallelism property to increase the dy-
namic response; and

3) reducing the development time to market.
Several special features can be achieved by using a FPAA-

FPGA/DSP mixed signal controller:
1) adaptive signal conditioning and programmability on-the-

fly;
2) parallelism properties and higher redundancy;
3) higher accuracy, higher bandwidth, faster response time,

and low power;
4) algorithm complexity and simplicity of implementation.
In this study, a FPAA-FPGA/DSP mixed signal controller for

power quality compensation will be designed, and it is proposed
that it will enhance compensator performance, which cannot be
achieved by using either analog or digital controllers alone. This
implies that the utilization of an integrated solution using both
analog and digital controllers is advantageous. In Section II,
the architecture of the proposed mixed signal controller will be
presented. Based on this, certain characteristics of the mixed
signal controller will be verified, using a three-phase four-wire
HAPF system, in the subsequent sections. The main goal of
this study is to apply the self-reconfiguration control strategy
to improve compensator performance based on the benefits of
the mixed signal controller and the proposed approximate THD
(ATHD) index, in which the ATHD is deduced. This is discussed
in Section III. The simulation and experimental verification of
the improvements in the compensation performance of the pro-
posed mixed controller application for a HAPF are presented in
Section IV. The conclusions are given in Section V.

II. PROPOSED MIXED SIGNAL CONTROLLER ARCHITECTURE

To achieve the advantages of using analog and/or digital con-
trollers, a mixed signal controller for power quality compensator
is proposed in Fig. 1. The FPAA and FPGA are combined with
an analog-to-digital converter (ADC), in which the input sig-
nals for the FPAA are analog signals from the power system
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Fig. 2. Configuration of a three-phase four-wire HAPF.

and the power quality compensator. The output digital signals
of the FPGA/DSP are PWM trigger signals, which control the
switching devices of the power quality compensator.

The FPAA can be operated as an adaptive signal conditioning
unit that preconditions and filters, according to the optimization
of system performance. The modified signals then pass to the
digital unit for further processing, assisted by the ADC. The digi-
tal system, FPGA/DSP, can work with a “backer” subprogram to
optimize the system operation by reconfiguring the control sys-
tem automatically, or to carry out self-testing and self-repairing
tasks. When it is necessary to reconfigure the analog part, the
reprogramming data can be transferred directly through the dig-
ital path to the FPAA. Conversely, the FPAA can also send out
control signals to the FPGA to modify the algorithm for protec-
tion, critical operations, etc. Finally, the mixed signal controller
can send out digital signals for control purposes, as shown in
Fig. 1.

The study focuses on the advantages of the mixed signal con-
troller and highlights its superior performance for power quality
compensation, compared with conventional digital controllers,
in terms of its self-testing, self-repairing, and self-healing capa-
bilities. The FPAA system used is the Anadigm third generation
AN231E04 development board [19], and for the FPGA system,
the Altera DE2-115 development board [20] is used. In the next
section, an ATHD index for real-time performance evaluation
is proposed and discussed. This evaluates whether the power
quality compensation performance meets the requirement. If
not, self-reconfiguration of the mixed signal controller will be
carried out to improve system compensation performance.

III. PROPOSED ATHD INDEX FOR REAL-TIME PERFORMANCE

EVALUATION AND ITS CONTROL

A three-phase four-wire HAPF (power quality compensator)
system [21]–[23] is shown in Fig. 2. The subscript “x” denotes
phases a, b, and c, n. vsx is the system voltage, and isx , iLx , and
icx are the system, load, and inverter currents for each phase, re-
spectively. Based on this circuit, the self-reconfiguration control
strategy for improving power quality compensator performance
is illustrated as follows.

Fig. 3. Hysteresis PWM control method.

Fig. 4. Current error waveforms by hysteresis PWM: (a) Actual error wave-
form, (b) approximate error waveform.

A. ATHD Index

The THD of a signal is a measurement of the harmonic distor-
tion, and is defined in (1) as the ratio of the sum of all harmonic
components to the fundamental component. THD is used as an
index to evaluate whether its power quality is acceptable or not.
However, the fundamental frequency current and its related har-
monic components are defined and computed under rms values.
It takes at least a period cycle of time to sample data for compu-
tation; for example, a 50-Hz system needs 0.02 s. In this section,
an ATHD index is proposed to have a fast determination of com-
pensator performance, and to improve its performance during
light loading, which cannot be implemented by a state-of-the-art
digital controller alone

THD =

√∑∞
n=2 I2

n

I1
. (1)
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TABLE II
THD AND ATHD WITH I1p AND HB VARIATIONS, RESPECTIVELY, IN PU

HB (pu) I1 p (pu)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 THD (%) 82.39 41.95 27.14 20.25 16.08 14.10 11.48 10.08 8.99 8.170
ATHD (%) 81.65 40.82 27.22 20.41 16.33 13.61 11.66 10.21 9.07 8.165

0.2 THD (%) 161.3 84.02 52.25 40.53 33.94 27.71 23.39 19.25 18.21 15.58
ATHD (%) 163.3 81.65 54.43 40.82 32.66 27.22 23.33 20.41 18.14 16.33

0.3 THD (%) 220.8 126.8 87.51 60.48 46.32 39.50 36.43 30.90 27.32 23.35
ATHD (%) 244.9 122.5 81.65 61.24 48.99 40.82 34.99 30.62 27.22 24.49

0.4 THD (%) 324.6 162.7 120.0 85.70 64.13 52.56 46.87 39.87 34.85 33.24
ATHD (%) 326.6 163.3 108.9 81.65 65.32 54.43 46.66 40.82 36.29 32.66

0.5 THD (%) 416.4 221.5 119.4 103.5 79.23 69.22 60.97 50.14 42.63 40.59
ATHD (%) 408.2 204.1 136.1 102.1 81.65 68.04 58.32 51.03 45.36 40.82

0.6 THD (%) 550.6 250.0 166.3 124.3 91.52 81.49 67.66 59.36 53.84 48.67
ATHD (%) 489.9 244.9 163.3 122.5 97.98 81.65 69.99 61.24 54.43 48.99

0.7 THD (%) 561.8 276.2 203.8 124.8 119.4 105.1 80.54 67.53 62.84 57.06
ATHD (%) 571.5 285.8 190.5 142.9 114.3 95.26 81.65 71.44 63.51 57.15

0.8 THD (%) 664.9 320.5 231.4 167.0 135.7 110.8 92.66 82.21 70.87 63.86
ATHD (%) 653.2 326.6 217.7 163.3 130.6 108.9 93.31 81.65 72.58 65.32

0.9 THD (%) 775.4 375.7 259.4 166.6 155.6 117.3 114.2 92.36 80.30 71.26
ATHD (%) 734.8 367.4 244.9 183.7 147.0 122.5 105.0 91.86 81.65 73.48

1.0 THD (%) 801.9 361.2 268.5 201.7 167.8 147.7 114.3 107.3 93.43 84.48
ATHD (%) 816.5 408.2 272.2 204.1 163.3 136.1 116.6 102.1 90.72 81.65

TABLE III
ABSOLUTE% ERROR OF ATHD

HB (pu) Average ΔAT H D I1 p (pu)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 ΔAT H D (%) 0.90 2.69 0.29 0.79 1.55 3.48 1.57 1.29 0.89 0.06
0.2 ΔAT H D (%) 1.24 2.82 4.17 0.72 3.77 1.77 0.26 6.03 0.38 4.81
0.3 ΔAT H D (%) 10.91 3.39 6.70 1.26 5.76 3.34 3.95 0.91 0.37 4.88
0.4 ΔAT H D (%) 0.62 0.37 9.25 4.73 1.86 3.56 0.45 2.38 4.13 1.74
0.5 ΔAT H D (%) 1.97 7.86 13.99 1.35 3.05 1.70 4.35 1.78 6.40 0.57
0.6 ΔAT H D (%) 11.02 2.04 1.80 1.45 7.06 0.20 3.44 3.17 1.10 0.66
0.7 ΔAT H D (%) 1.73 3.48 6.53 14.50 4.27 9.36 1.38 5.79 1.07 0.16
0.8 ΔAT H D (%) 1.76 1.90 5.92 2.22 3.76 1.71 0.70 0.68 2.41 2.29
0.9 ΔAT H D (%) 5.24 2.21 5.59 10.26 5.53 4.43 8.06 0.54 1.68 3.12
1.0 ΔAT H D (%) 1.82 13.01 1.38 1.19 2.68 7.85 2.01 4.85 2.90 3.35

Fig. 5. Simulated current waveform when I1p = 1.6 A, HB = 0.1 A,
THD = 4.92%, ATHD = 5.1%, |ΔATHD | = 3.72%.

Fig. 6. Simulated current waveform when I1p = 0.5 A, HB = 0.1 A,
THD = 16.08%, ATHD = 16.33%, |ΔATHD | = 1.55%.



5942 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 30, NO. 10, OCTOBER 2015

Fig. 7. Simulated current waveform when I1p = 0.7 A, HB = 0.6 A,
THD = 67.56%, ATHD = 69.99%, |ΔATHD | = 3.44%.

Fig. 8. Simulated current waveform when I1p = 0.4 A, HB = 0.7 A,
THD = 124.8%, ATHD = 142.9%, |ΔATHD | = 14.5%.

Fig. 3 shows the hysteresis current control of a voltage source
PWM inverter [24], in which the sinusoidal reference current i∗cx

is compared with the actual current, icx . When the actual current
is greater (less) than the reference current by a hysteresis band
(HB) value, the inverter leg is switched ON or OFF accordingly.
Therefore, the HB specifies the maximum current ripple.

By superposition, the actual current can be decomposed into a
sinusoidal current and an irregular triangular current waveform.
An irregular triangular waveform is given in Fig. 4(a), in which
the rate of change of current at any moment should be different,
due to its different voltage amplitude at different times. There-
fore, the triangular waveforms are actually not symmetrical.

Referring to (1), the ratio of the sum of all harmonic current
components to the fundamental current component can be con-
sidered as the ratio of the rms value of the irregular triangular
waveform, as shown in Fig. 4(a), to the fundamental sinusoidal
waveform. However, by taking an approximation, the regular

TABLE IV
SIMULATED AND EXPERIMENTAL PARAMETERS FOR THE HAPF SYSTEM

System parameters Physical values

Source VL x , Ls 110 V, 1 mH
Passive part Lc , Cc 10 mH, 40 μF

20% Testing Load
Nonlinear rectifier load
(Inductor, resistor, capacitor)

LN L x , RN L x , CN L x 35 mH, 169 Ω , 373 uF

50% Testing Load
Nonlinear rectifier load
(Inductor, resistor, capacitor)

LN L x , RN L x , CN L x 35 mH, 55 Ω , 373 uF

70% Testing Load
Nonlinear rectifier load
(Inductor, resistor, capacitor)

LN L x , RN L x , CN L x 35 mH, 55 Ω , 373 uF

Linear load (Inductor,
resistor)

LL x , RL x 0 mH, 100 Ω

90% Testing Load
Nonlinear rectifier load
(Inductor, resistor, capacitor)

LN L x , RN L x , CN L x 35 mH, 55 Ω , 373 uF

Linear load (Inductor,
resistor)

LL x , RL x 0 mH, 50 Ω

Fig. 9. THD versus ATHD.

triangular waveform, as shown in Fig. 4(b), is chosen instead of
the irregular one. Fig. 4(b) shows that each period of the trian-
gular waveform is different. Correspondingly, the rms value of
a regular triangular waveform is given in (2). The rms value is
shown to be independent of the period of the triangular wave-
form. Finally, the proposed ATHD index can be defined as (3)

Ih =

√√√√ 1
T
∫T

0

[
8 · HB

π2

∞∑

n=1

(
1
n

cos nωt

)]2

dt =
HB√

3
(2)

ATHD =
HB√
3I1

. (3)

According to the instantaneous power theory [25], the instan-
taneous fundamental active current peak value can be calculated
by (4). It should be noted that (4) can be used when the three-
phase voltage source is balanced and sinusoidal. However, un-
balanced and nonsinusoidal voltage is out of this study’s scope.
More detail concerning the required compensation current un-
der unbalanced and nonsinusoidal voltage can be computed by
the method given in [28]. The ATHD is calculated during com-
pensation, and as a result the fundamental reactive component
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Fig. 10. Control block diagram for proposed mixed signal controller.

Fig. 11. Configuration connections between FPAAs and FPGA/DSP.

Fig. 12. Gain = 2, data streams between FPGA and FPAA.

is not considered in computing the ATHD value. The calculated
ATHD would otherwise be smaller when the fundamental reac-
tive current is included. In (3), I1 is an rms value that has �2
difference with its peak value (I1p ), which can be calculated
instantaneously, using the instantaneous power theory [25]

I1p =
√

2 · p√
3 ‖Δ‖

(4)

where ‖Δ‖ =
√

v2
a + v2

b + v2
c and

p̄ =
1
T
∫T

0 �v ·�idt =
1
T
∫T

0 (va · ia + vb · ib + vc · ic)dt.

Then, finally

ATHD =

√
2
3

HB
I1p

. (5)

Fig. 13. Simulated system voltage and current before compensation.

ATHD is defined as (5), a fast evaluation index of compen-
sation performance instead of THD, in which the HB of the
ATHD can be determined according to hysteresis PWM, or the
compensation error of space vector modulation.

B. THD and ATHD

A comparison between THD and ATHD is performed under
two categories: With and without switching power quality com-
pensations. The ATHD is an approximated method to evaluate
the power quality compensator’s performance during compen-
sation. When there is no switching power quality compensator,
the ATHD cannot be used to reflect the THD as there is no
HB or error margin value for the ATHD computation. Here,
capacitor banks and PPFs can perform steady compensation,
with conventional THD as the performance evaluation index.
The ATHD cannot be used under these circumstances.

When switching power quality compensators such as APFs
and HAPFs are used, the proposed ATHD can be used to evaluate
the power quality compensation performance. When the HB or
error margin at a particular instant can be determined, the ATHD
can be calculated using the instantaneous power theory [25].

Table II shows the simulated THD and ATHD values with
respect to the different fundamental current peak I1p , in per unit
(pu), and HB in pu at sampling frequency = 5 KHz, and system
frequency = 50 Hz. For example, when I1p = 0.5 and HB =
0.1, its simulated THD is 16.08% and its ATHD is 16.33%.

Table III shows the simulated absolute percentage error of
ATHD compared with THD through (6). However, the ATHD
index is estimated to evaluate the compensation performance
instantaneously. The absolute percentage error range of ATHD
is shown to be from 0.06% to 14.5%, and its average percentage
error is 3.44%.

Taking the IEEE Standard [27] with total demand distor-
tion (TDD) for light rated loading (ISC /IL > 1000), and the
Hong Kong Power Quality Standard [29] into consideration, at
worst case, the nominal rate current is assumed to be equal to
the fundamental load current with the result that THD = TDD.
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TABLE V
EXPERIMENTAL RESULTS OF USING CONVENTIONAL AND PROPOSED CONTROLLERS

Before compensation After compensation

Conventional controller Proposed controller
Different cases is x (A) PF THD i s x (%) is x (A) PF THD i s x (%) is x (A) PF THD i s x (%)

20% load A 1.09 0.81 52.5 1.38 0.91 20.7 1.33 0.94 13.9
B 1.08 0.81 51.9 1.46 0.93 21.1 1.38 0.94 15.8
C 1.07 0.81 53.3 1.50 0.90 22.1 1.38 0.93 15.0

50% load A 2.51 0.80 35.6 2.18 0.98 17.6 2.09 0.99 10.8
B 2.47 0.80 35.5 2.16 0.98 17.1 2.13 0.99 11.9
C 2.51 0.80 34.4 2.18 0.98 18.7 2.11 0.99 10.5

70% load A 3.59 0.90 23.7 3.26 1.0 6.3 3.25 1.0 5.7
B 3.49 0.90 23.7 3.30 0.99 7.7 3.28 1.0 6.1
C 3.42 0.90 24.4 3.28 0.99 7.5 3.27 0.99 6.4

90% load A 4.55 0.95 17.6 4.47 1.0 5.9 4.39 1.0 5.6
B 4.47 0.95 17.4 4.41 1.0 7.1 4.39 1.0 6.7
C 4.64 0.95 16.6 4.57 1.0 7.8 4.50 1.0 7.5

This study, therefore, focuses on a THD close to or below 20%.
In Tables II and III, THD values which are close to or below
20% are highlighted underline. The average percentage error of
ATHD within 20% THD is 2.089%.

To keep within the safety margin, it is suggested that an ATHD
at 16% is chosen when THD at 20% is the compensation target
to include this average percentage error of ATHD. However, the
simulated results are estimated values and it should be noted
that the values will be different in other circumstances

|ΔATHD | =
∣∣
∣∣
THD − ATHD

THD

∣∣
∣∣ × 100%. (6)

Several simulated current waveforms are given in Figs. 5, 6, 7,
and 8 at THD = 5%, 16%, 68%, and 124%, respectively. Fig. 5
shows the waveform at THD � 5% with |ΔATHD | = 3.72% cor-
responding to I1p = 1.6 A and HB = 0.1 A. Fig. 6 shows the
waveform at THD � 16% with |ΔATHD | = 1.55% correspond-
ing to I1p = 0.5 A and HB = 0.1 A. Fig. 7 shows the waveform
at THD � 68% with average |ΔATHD | = 3.44% corresponding
to I1p = 0.7 A and HB = 0.6 A. Fig. 8 shows the waveform at
THD � 124% with the largest |ΔATHD | = 14.5% correspond-
ing to I1p = 0.4 A and HB = 0.7 A.

At THD � 16%, based on Table II, the hysteresis error band
HB should be set as one-fifth of the fundamental amplitude.
Furthermore, a parameter K = I1/HB is defined as a ratio of
the fundamental rms current amplitude to the hysteresis error
band value. When K is increased, the compensated current rip-
ple relatively decreases. Taking the system parameters listed in
Table IV under 50% loading compensation, Fig. 9 shows the
simulated THD and calculated ATHD with respect to different
K, and the difference between them is seen to be small. The THD
standard of 20% is selected, as discussed, while the ATHD of
16% for the percentage error and safety margin considerations
is selected. Fig. 9 shows that K is near to 3.8 at ATHD � 16%.
In Table II, this is the case with I1p = 0.5 A, HB = 0.1 A, THD
= 16.08%, in which I1p is the fundamental current peak value.
This means that the HB value or error margin of the hysteresis
PWM control should not be less than 0.26 times the fundamental
rms current amplitude. Otherwise, no matter how fast the power

Fig. 14. Simulated system voltage and current after HAPF compensation.

electronics switching device, the compensation performance of
the power quality compensator will not be acceptable.

An ATHD can be used to estimate the power quality compen-
sation system performance, rapidly determining the THD value.
The advantages of using an ATHD over THD are as follows:

1) It can simplify the computation without computation of
the frequency spectrum.

2) The ATHD value can be obtained in real time.
3) Hardware implementation of ATHD can be easily

obtained.
The ATHD is, however, an approximated performance index,

unlike THD. It can only be calculated when the HB or error mar-
gin at a certain instant can be determined. An ATHD is suitable
to be used with APFs and HAPFs for power quality compen-
sation. Nevertheless, the dc-link voltage of the power quality
compensators should be sufficient to successfully perform com-
pensation [21], [22].

C. Self-Reconfiguration Control Strategy for Improving Power
Quality Compensator Performance

In a traditional power quality compensating system, the sys-
tem rating design is usually based on the defined nominal values
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(a)

Fig. 15. Three-phase experimental system currents before compensation during: (a) 20% loading, (b) 50% loading, (c) 70% loading, and (d) 90% loading.

(full loading consideration). In practical operations, the system
loading varies over time. The loading may be full or light. During
a full loading situation, the system performance can be guaran-
teed, due to the nominal design. However, during a light loading
situation, the power quality compensator performance cannot
usually reach the standard requirement [27], [29]. The mixed
signal controller proposed in this study has self-reconfiguration
capabilities, which cannot be achieved using only a digital con-
troller. The self-reconfiguration control strategy for improving
power quality compensator performance is given as follows.

Using a simplified three-phase instantaneous pq theory [26],
the reference compensating current for a HAPF shown in Fig. 2
can be determined by

i∗cx =
(
iLa − p̄

v2 vLa

)
−→na +

(
iLb −

p̄

v2 vLb

)
−→nb

+
(
iLc −

p̄

v2 vLc

)
−→nc (7)

where {−→na ,−→nb,−→nc} is the space basis in the a-b-c coordinate,
p = vLaiLa + vLbiLb + vLciLc , and p̄ is the average value of
instantaneous power p.

From Fig. 2, the actual icx should be the same as its reference
i∗cx , (i∗cx = icx ) under perfect compensation. The source current,

composed of load and compensator currents, is defined by (8).
By hysteresis PWM, the current error should be within the HB.
As a result, (8) can be rewritten as (9)

isx = iLx + i∗cx ≡ isx1 (8)

isx1 ∼= iLx + icx + HB. (9)

Considering the digital control system, the resolution of HB
is limited by the available bits (B) of the ADC, and the amplitude
width (W) of the input signal. The minimum HB value can be
given as

HBmin =
W

2B+1 . (10)

This minimum HB cannot be further reduced due to the hard-
ware limitations of the controller; this implies that the digital
controller compensation performance may not be acceptable
during a light load condition, particularly when the ATHD or
the THD is around 16% and K � 3.8, as shown in Fig. 9. From
(9) and (11), when the amplitude of HB is relatively near to
the amplitude of iLx and icx , the compensation performance
is not acceptable. This is because the HBmin cannot be further
reduced, and a parameter gain G is attached to K. Finally, as G
is an amplification gain, the K value can move to a larger value.
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Fig. 16. Compensated three-phase experimental system currents by using the conventional digital controller during: (a) 20% loading, (b) 50% loading, (c) 70%
loading, and (d) 90% loading.

The THD and the ATHD can, therefore, be improved

K = G · isx1

HB
∼= G ·

(
1 +

iLx + icx

HB

)
. (11)

Fig. 10 shows a control block diagram for the proposed mixed
signal controller. The gain G can be adjusted according to (12),
where INT is an integer function that takes out all the fraction
parts, W is the measured width (range) of the ADC, and R is
the peak-to-peak input signal range for a given period, such
as 1 min or several hours, to avoid system fluctuation during
operations. The G is calculated by a digital controller such as
DSP or FPGA, and then sent to FPAA for gain modification.
During light loading, G can be an integer number larger than 1.
To avoid analog signal saturation, a saturation detection function
can be implemented in FPAA. G = 1 when saturation occurs

G = INT
(

W

R

)
. (12)

Finally, the compensation error can be limited by (13)

Δierror = HBmin = G · i∗cx − G · icx . (13)

When the ATHD � 16% and G = 1, K � 3.8. According to
(11) and Fig. 9, when the ATHD � 20%, G = 2, K is approxi-
mately 6. The ATHD and the THD can then be lowered to around
10%. The gain G can be seen to improve the compensation

performance under the hysteresis PWM, without changing the
coupling inductance and capacitance.

D. System Implementation and Communication

Fig. 11 shows the system implementation based on FPAAs
and FPGA/DSP. FPGA/DSP is used for the digital parts and
FPAA for the analog parts.

The basic idea of the self-reconfiguration characteristic is
that a FPGA-based high-speed control logic block and a FPAA-
based analog module are used to adjust the gain automatically
and rapidly. Two FPAAs and one FPGA are used in the im-
plementation. The FPAAs are under the control of the FPGA,
and the inherent reconfigurable properties of FPAAs allow the
analog modules to be dynamically reconfigured through a serial
interface. In the system initialization, voltage and current sig-
nals are detected and amplified by the FPAA, digitized through
an ADC, and fed into the FPGA for further processing. The
gain of the gain limiter is controlled by the FPGA. The output
voltage limit is 3 V, which is the maximum input voltage for the
ADC. If the input signal amplified by the gain is saturated, the
FPGA will reset the gain G to 1. Through various computations
and comparisons, the corresponding gain value G for the FPGA
will be obtained.

The configuration clock of FPAA and FPGA is 20 MHz.
In the configuration process, shown in Fig. 12, every gain value
needs 11 bytes of control logic data, defined by the configuration
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Fig. 17. Compensated three-phase experimental system currents by using the proposed mixed signal controller during: (a) 20% loading, (b) 50% loading,
(c) 70% loading, and (d) 90% loading.

protocol in the FPAA. Each byte has one 8-bit address, which
in total needs t1 (s) to completely transmit. The AD sampling
frequency of the whole controller is 25 kHz, so the controller
outputs obtained in this period is 1/25 kHz (40 μs). In total,
the control loop, including the AD conversion, pq theory, PWM
techniques, and feedback loop, can be completed in one ADC
sample period. Moreover, t1 , as given in (14), is much smaller
than one ADC sampling cycle, which means the compensation
control algorithm will not be affected by the on-the-fly FPAA
reconfiguration

t1 = 11 × 8 × 1
20 × 106 = 4.4 × 10−6s 
 1

25 × 103

= 4 × 10−5s. (14)

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the proposed mixed signal controller, for im-
proving power quality compensator performance, will be ver-
ified by simulation and experiments. This is compared with a
conventional digital controller, in which a three-phase four-wire
HAPF system, shown in Fig. 2, is chosen as the testing power
quality compensator. Table IV lists the simulated and experi-
mental system parameters for the HAPF with different loadings.
Table V summarizes the power quality parameters for different
testing loads before compensation.

To show the advantage of the proposed mixed signal con-
troller, four sets of loading parameters are chosen. To ensure
the focus is on the ATHD and the mixed signal controller strat-
egy, the simulated and experimental three-phase loadings are
approximately balanced, shown in Fig. 2.

Simulation studies were carried out using PSCAD/EMTDC.
Fig. 13 shows the simulated system voltages and currents
before compensation. When 50% loading is connected, the
three-phase simulated THDis x

of system current are 39.3%,
38.3%, and 37.1%, with power factors (PF) = 0.83, 0.82, and
0.82, respectively. When 90% loading is connected (loading
compensation, by applying the conventional digital changes),
the three-phase simulated THDis x

are 20.8%, 20.3%, and
19.6%, with PF = 0.95, 0.95, and 0.95, respectively. Be-
fore compensation, the simulated THDis x

cannot satisfy the
THDis x

< 20% requirement during both 50% and 90% loading
conditions.

Fig. 14 shows the simulated system voltages and currents
after HAPF compensation. After compensation, the simulated
THDis x

satisfies the THDis x
< 20% requirement during both

50% and 90% loading conditions. Moreover, the PF are im-
proved to unity. In the PSCAD simulation, the signal resolution
is infinite, as there is no AD conversion process, and the simula-
tion process is not affected by EMI noise. Therefore, the HAPF
compensation performance is satisfactory no matter whether the
loading is light or full.



5948 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 30, NO. 10, OCTOBER 2015

Fig. 18. Dynamic compensation performance during loading changes by using: (a) Conventional digital controller and (b) proposed mixed signal controller.

However, for the hardware experimental case, the signal reso-
lution will greatly affect the HAPF compensation performance.
Fig. 15 shows three-phase experimental system currents before
compensation during 20%, 50%, 70%, and 90% loading con-
ditions. Figs. 16 and 17 show the corresponding three-phase
experimental system currents after HAPF controller and the
proposed mixed signal controller, respectively.

Comparing Figs. 16 and 17, the proposed mixed signal con-
troller can provide better compensation performance, particu-
larly during light loading conditions. For example, the THD
values in phase A are improved from 20.7% to 13.9%, 17.6%
to 10.8%, 6.3% to 5.7%, and 5.9 to 5.6, for 20%, 50%, 70%,
and 90% of the loading, respectively. Using a conventional dig-
ital controller, the THDis x

during 20% loading cannot satisfy
the desired value (THDis x

< 20%), while the proposed mixed
signal controller can. This verifies the effectiveness of the pro-
posed controller in improving the HAPF compensation perfor-
mance. Table V also summarizes the HAPF experimental com-
pensation results using the conventional digital controller and
the proposed mixed signal controller during different loading
cases.

Fig. 18 shows the dynamic compensation performance dur-
ing loading changes using the conventional and the proposed

controllers. The dynamic response time of both controllers is
less than two cycles, which verifies the fast dynamic response
of the proposed controller and the function of on-the-fly mixed
signal reconfiguration.

V. CONCLUSION

A mixed signal controller for power quality compensator
improvement with adaptive gain and on-the-fly programmabil-
ity and with a self-reconfiguration property in a three-phase
four-wire HAPF system has been proposed in this study. It
can achieve better performance than a conventional digital con-
troller. To detect the compensation performance instantaneously,
an ATHD index was deduced. From this, the corresponding
gains can be calculated in the FPGA and transferred by feed-
back to the FPAA in a dynamic configuration process. The
system implementation and communication between the analog
and the digital controllers are discussed. Moreover, the viabil-
ity and effectiveness of the proposed mixed signal controller
for three-phase four-wire HAPF have been demonstrated with
experimental results, which exhibit better compensation per-
formance when compared with conventional digital controllers
during light load conditions.
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(S&T) Innovation Award of Ho Leung Ho Lee Foundation in 2010, and also The
State S&T Progress Award in 2011. He also received both the 2012 and 2014
Macau S&T Invention and Progress Awards. In recognition of his contribu-
tion in high-technology research and industrial development in Macau, he was
awarded by Macau SAR government the Honorary Title of Value in 2010. He
was also selected as the “Scientific Chinese of the Year 2012.” He is currently the
Industrial Relationship Officer of IEEE Macau Section, the Chairman of IEEE
SSCS and CAS/COMM Macau Chapter. He is currently an IEEE SSCS Distin-
guished Lecturer for 2014–2015. He was A-SSCC 2013 Tutorial Speaker for
Energy-Efficient SAR-Type ADCs and has also been with the technical review
committee of various international scientific journals for many years, e.g. JSSC,
TCAS, IEICE, etc. He was the Chairman of the Local Organization Committee
of IEEJ AVLSIWS’04, the TPC Cochair of the IEEE APCCAS’08, ICICS’09,
and PRIMEAsia’11. He is currently with the TPC of ISSCC, A-SSCC, RFIT,
VLSI-DAT, and an Editorial Board Member of the Journal AICSP.

Rui P. Martins (M’88–SM’99–F’08) born in
April 30, 1957. He received the Bachelors’ (five
years), Masters’, and Ph.D. degrees, as well as the
Habilitation for Full-Professor in electrical engineer-
ing and computers from the Department of Elec-
trical and Computer Engineering, Instituto Superior
Técnico (IST), TU of Lisbon, Lisbon, Portugal, in
1980, 1985, 1992, and 2001, respectively.

He has been with the Department of Electrical
and Computer Engineering, IST, TU of Lisbon, since
October 1980. Since 1992, he has been on leave from

IST, TU of Lisbon (now the University of Lisbon since 2013), and is also with
the Department of Electrical and Computer Engineering, Faculty of Science
and Technology (FST), University of Macau (UM), Macao, China, where he is
currently a Chair-Professor since August 2013. In FST, he was the Dean of the
Faculty from 1994 to 1997 and he has been a Vice-Rector of the University of
Macau since 1997. From September 2008, after the reform of the UM Char-
ter, he was nominated after open international recruitment, and reappointed in
2013 as a Vice-Rector (Research) until August 31, 2018. Within the scope of
his teaching and research activities, he had taught 21 bachelors’ and masters’
courses and has supervised (or cosupervised) 35 theses, 15 of Ph.D., and 20
of Masters. He has coauthored five books and four book chapters (refereed);
nine U.S. patents; 291 refereed papers, in scientific journals (70) and in con-
ference proceedings (221); as well as other 47 academic works, in a total of
356 publications. He was a cofounder of Chipidea Microelectronics (Macao)
[now Synopsys] in 2001/2002, and created the Analog and Mixed-Signal VLSI
Research Laboratory of University of Macau, in 2003, elevated in January 2011
to the State Key Laboratory of China (the first in engineering in Macao), being
its Founding Director.

Dr. Martins was the Founding Chairman of the IEEE Macau Section from
2003 to 2005, and the IEEE Macau Joint-Chapter on Circuits and Systems
(CAS)/Communications from 2005 to 2008 [2009 World Chapter of the Year
of the IEEE CASS]. He was the General Chair of the 2008 IEEE Asia-Pacific
Conference on Circuits and Systems, and was the Vice-President for the Region
10 (Asia, Australia, the Pacific) of the IEEE CAS Society from 2009 to 2011.
Since then, he was the Vice-President of (World) Regional Activities and a
Member of the IEEE CAS Society from 2012 to 2013, and an Associate Editor
of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS

from 2010 to 2013, and was nominated as the Best Associate Editor of T-CAS II
for 2012 to 2013. Plus, he has been a Member of the IEEE CASS Fellow
Evaluation Committee for Classes of 2013 and 2014, and he is the CAS So-
ciety Representative in the Nominating Committee, for the election in 2014,
of the Division I (CASS/EDS/SSCS)—Director of the IEEE. He received two
government decorations: The Medal of Professional Merit from Macao Gov-
ernment (Portuguese Administration) in 1999, and the Honorary Title of Value
from Macao SAR Government (Chinese Administration) in 2001. In July 2010,
he was elected, unanimously, as a Corresponding Member of the Portuguese
Academy of Sciences in Lisbon, being the only Portuguese Academician living
in Asia.
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