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Abstract Presented is a frequency-translation technique

for compact realization of a low-noise lowpass filter (LPF)

for biopotential acquisition systems. It is by chopper-sta-

bilizing a bandpass filter (BPF) to obtain an ultra-low-

cutoff lowpass response. This technique not only removes

the BPF’s flicker noise and dc-offset, but also adds clock-

based gain-bandwidth tunability and saves chip area

because of highly relaxed time constants. A 1.4 to 15-Hz

2nd-order OTA-C ladder LPF designed in a 90-nm CMOS

process verifies the merits of the technique with respect to

the prior art.

Keywords Lowpass filter � Bandpass filter � Frequency
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1 Introduction

A low-noise ultra-low-cutoff lowpass filter (LPF) is a

crucial building block for portable biomedical systems. The

amplitudes of the biopotential signals are in the order of

tens of lV to tens of mV and the frequency span from DC

to a few kHz. Among such a low frequency range, an ultra-

low-cutoff LPF cannot be designed in a simple manner as

the fabrication cost of the chip will be increased when large

time constants are required for integrated circuit imple-

mentation. The state-of-the-art [1–3] reduces the silicon

area by applying different circuit structures for achieving

an ultra-low transconductance. Yet, lowering the trans-

conductance leads to substantial noise degradation. Fur-

ther, due to the low-frequency characteristic and lV level

of bio-potential signals, the 1/f noise of the measuring

devices must be concerned.

In order to acquire, area-efficiently, the weak biopo-

tential signals using an ultra-low-cutoff LPF while

achieving low passband noise, a frequency-translation

technique is introduced. It reuses the chopper stabilization

[4], originated for flicker noise and dc-offset removals, to

convert a high-Q bandpass filter (BPF) into a LPF with an

ultra-low-cutoff. The relaxed time constants translate into

significant area savings because of smaller capacitor sizes.

The design example is based on a 2nd-order operational

transconductance amplifier–capacitor (OTA-C) ladder

BPF. The OTA is realized as a Nauta cell [5] that involves

only CMOS inverters, being very suitable for realizing a

high-Q BPF with small power and area.

2 Proposed LPF

Figure 1 shows the operating principle of the proposed

LPF, which consists of a BPF with input and output

choppers. A tunable clock generator offers the modulation

signals to both choppers. The input chopper modulator

(MIN) will, first, frequency-translate the input biopotential

signal and the corresponding contaminating signals from

spectrum S1 to S2. The chopper frequency (fchop) should be

much larger than the 1/f noise corner frequency of the BPF,

to minimize the noise contribution of the choppers to the

total output noise power spectral density (PSD). Thus, fchop

is fixed in a range of few kHz. As depicted in spectrum S2,

the input signal of the IA is split into the upper and lower
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sidebands. The BPF with a center frequency equals to fchop

will select the desired signal, while rejecting the unwanted

interferers, noise and odd-harmonic components at the high

frequency bands. As a result, the time constant for the

implementation of the BPF can be much relaxed, and the

1/f noise of the BPF can be suppressed concurrently. Finally,

the output chopper modulator (MOUT) will frequency-

translate the wanted signal to the passband (spectrum S3).

3 Circuit implementation

The involved BPF uses a ladder structure for its insuscepti-

bility to component variation, especially in their passband.

Although a typical ladder BPF can be easily deducted with the

help of the filter handbook, it requires large grounding

capacitors or inductors that are not easy to be realized by

active devices. Here, a modified 2nd-order RLC ladder filter

topology is proposed as shown in Fig. 2. It is customized from

a 3rd-order Butterworth bandpass filter by removing the

central grounding LC circuit. It shows that the bandpass

response will have weaker stopband attenuation than the

typical one as the capacitance value of C1 and C2 are fixed to a

very small value of 100 fF. As discussed in the previous

section, fchop should be much higher (i.e., 4 kHz) than the

1/f noise corner frequency (i.e.,*400 Hz) of the IA for noise

minimization. According to the LC resonant equation, the

center frequency (fcenter) of the bandpass filter equals to

1/2p(LC)1/2, the inductance value can be calculated to be

15.83 kH, where fcenter = fchop is set for fulfilling the fre-

quency-translation condition.

Figure 3 shows the actual implementation of the com-

plete LPF based on the OTA-C ladder structure. Thanks to

the Nauta cell [5] no common-mode feedback circuit is

required. The overall CLF circuit consists of two grounding

resistors (gm0 and gm6) for realizing R1 and R2, four series

capacitors (C1 and C2), and two gyrators (a) and (b) which

are exploited to implement equivalently the inductors, L1

and L2, respectively. The required capacitor sizes are

highly reduced as listed in Fig. 3.

Considering the front stage of the LPF before the buffer,

the voltage transfer function (V1/Vin) is given by,

V1

Vin

¼ jxC1=gmOTA

1þ jxC1=gmOTA � x2C1CL1=g2
mOTA

¼ jx=QFx0

1þ jx=QFx0 � x2=x2
0

ð1Þ

by choosing the OTA’s transconductance gmOTA =

gm1 = gm2, we obtain the filter parameters,

QF ¼
ffiffiffiffiffiffiffiffi

CL1

C1

r

and x0 ¼
gmOTA
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p ð2Þ
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Fig. 1 Operating principle of the proposed LPF using a chopper-

stabilized BPF
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where QF is the filter’s quality factor and fcenter = 2px0.

Moreover, a buffer is added to separate the front and back

stages of the LPF, thus the loading effect to the gain of the

front stage can be neglected and the transfer function of the

2nd-order bandpass filter (Vout/Vin) can simply be derived

as the square product of Eq. (1).

Referring to Eq. (2) the bandwidth (fpassband) of the

bandpass filter can be given by,

fpassband �
x0

2pQ
¼ gmOTA

2pCL1

ð3Þ

Equations (2) and (3) hint the way to control fpassband with-

out affecting the QF is by changing gmOTA. This operation is

equivalent to control the lowpass cutoff (fcut-off) of the LPF.

However, since the input CM voltage of the OTA is fixed and

the increment of gmP and gmN call for more power, adjusting

gmOTA to control fpassband may not be that efficient. Thus, the

cutoff tuning is achieved by changing the size of the gyrator’s

loading capacitors (CL1 and CL2). Changing CL1 and CL2 will

also alter fcenter although the effect is less severe than using

gmOTA. As a result, the LPF should include a variable clock

signal generator to track fcenter with fchop.

4 Simulation results

The design and verification are based on a 90-nm CMOS

process. Figure 4 shows the simulated frequency responses

under two different sizes of CL and fchop, showing the

flexibility of both bandwidth and gain adjustments. The

cutoff is not exactly half of the fpassband, as the bandpass
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response is not the ideal shaping and the demodulated

residual odd harmonic components may also affect the final

lowpass response. However, the result confirms that a

proper lowpass response with 40 dB/decade stopband

attenuation can be achieved, providing that the BPF’s

quality factor is higher than ten, which is reasonable to

achieve in practice at such a frequency range. The maxi-

mum tuning range of the lowpass cutoff is around 15 Hz.

Comparing with the prior works [1, 2, 7] in Table 1, the

proposed solution attains tunable and ultra-low cutoffs with

small power and output noise due to the techniques of

frequency-translation and a more reasonable transconduc-

tance value based on the Nauta cell OTA. On the other

hand, the stopband attenuation in this work is fixed to

40 dB/decade without involving a resonant zero to limit the

attenuation at high frequency as in [1]. Nevertheless, this

work still shows less dynamic range than [1] due to the

existence of chopper spikes. The dynamic range can be

improved by adding a spike filter after the LPF [6].

5 Conclusion

A frequency-translation technique for low-noise ultra-low-

cutoff lowpass filtering is presented. Taking advantages from

the chopper stabilization, which has been the technique of

flicker noise and dc-offset reduction, the time constant for

realization an ultra-low-cutoff LPF can also be significantly

relaxed. These concurrent noise and area reduction features

particular suit biopotential acquisition systems.
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