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Abstract— This paper reports a regulation-free sub-0.5-V crys-
tal oscillator (XO). The XO specifically designed for Bluetooth
low-energy (BLE) radios aims for direct-powering by the har-
vested energy. To secure its performance against process, voltage,
and temperature (PVT) variations, while reducing its startup
time and energy, we propose a dual-mode gm scheme and
a scalable self-reference chirp injection (SSCI) technique. The
former employs an inductive multistage gm to mitigate the
crystal’s stray capacitance during the startup, but a single-stage
gm in the steady state to preserve the phase noise (PN). For the
latter (SSCI), we generate a scalable chirping sequence to kick-
start the XO, avoiding trimming of the auxiliary oscillator. The
XO fabricated in 65-nm CMOS is measured with two common
crystals (16/24 MHz) over a 0.3-to-0.5-V supply. At 24 MHz
and 0.35 V, the startup time and energy of the XO are 400 µs
and 14.2 nJ, respectively, while showing a steady-state power of
31.8 µW and a PN of −134 dBc/Hz at 1-kHz offset. The frequency
stability is 14.1 ppm against temperature (−40 °C–90 °C) and
17.9 ppm against voltage (0.3–0.5 V), both conform to the BLE
standard (±50 ppm) with adequate margin.

Index Terms— Bluetooth low-energy (BLE), chirping, CMOS,
crystal oscillator (XO), duty-cycling, energy harvesting (EH), fast
startup, Internet-of-Things (IoT), ultralow power (ULP), ultralow
voltage (ULV).
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Fig. 1. Percentage of energy consumed during the startup of the XO over
the total energy ETOTAL = PTRX × TON + PSLEEP × TOFF + ES . PSLEEP
(assumed 1 μW here, as approximated from [7]) is the sleep power, TON

(128 μs) and TOFF (128 ms) are the assumed active time and sleep time of
the TRX, respectively.

I. INTRODUCTION

ULTRALOW-POWER (ULP) wireless radios are the cor-
nerstone of a wide variety of Internet-of-Things (IoT)

applications. In particular, for the environmental monitoring,
the ULP radios should operate under intermittent operation [1]
to further reduce the data handling while prolonging the
battery lifetime. Each ULP radio requires a stable reference
for frequency synthesis at RF. The crystal oscillator (XO)
is a reliable solution, but without the startup aid, it can
take a few milliseconds for the XO to settle into the steady
state [2]–[5] due to the high quality factor of the crystal
(∼105). Its startup time (ts) dominates the “ON” latency of
the radio, and its startup energy (ES) can significantly degrade
the effectiveness of duty cycling. As depicted in Fig. 1, if the
active energy (ETRX) of a transceiver (TRX) is 1280 nJ
(ON-time of 128 μs [6] and active power of 10 mW [7]),
the percentage of energy spent for starting the XO in every
working cycle is ∼42% for ES of 1000 nJ for conventional
XO and a duty cycle of 0.1%. Such a percentage is going
up since recent TRXs have managed to lower their active
power (PTRX) by proper circuit techniques [8]–[10]. In this
regard, it is essential to reduce ES for the ULP radios to
save energy by duty cycling. Recent efforts in both academia
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Fig. 2. Estimated lifetime of a commercial coin battery AG4 versus PTRX,
which can be expressed as: battery capacity/(PTRX× active duty cycle).

and industry succeeded in shortening ts and ES of the
XO [6], [7], [11]–[16].

On the other hand, long-term sustainability of wireless
sensor nodes is another critical perspective of IoT deploy-
ment. For battery-powered ULP radios, the effort of battery
replacement is largely labor-intensive. Even with a 0.1%
active cycle, and a PTRX of 2.3 mW, the lifetime of a ULP
radio can hardly exceed a year under a coin-size battery
(Fig. 2). For the prospect of one trillion IoT devices in the
years to come, it implies 2.7 billion of batteries replacement
daily, being a tremendous effort and unsustainable to the
environment. To this end, energy harvesting (EH) offers the
outlook for perpetual operation [17]–[19] of the ULP radios,
while eliminating the cost and volume limit of the battery.
Thermoelectric (10–1000 μW/cm2) and photovoltaic (indoor:
10–100 μW/cm2) are promising ambient sources, but their
sub-0.5-V outputs [17] are too low for typical circuit solutions,
and can vary (although slowly) with the environmental factors
(e.g., temperature or light intensity). These facts motivate a
new paradigm of analog and RF circuits that can survive
against an inconstant sub-0.5-V supply voltage (VDD), elim-
inating the cost and loss of interim dc–dc converters and
regulators.

This paper reports a regulation-free sub-0.5-V XO according
to the system aspect of the EH Bluetooth low-energy (BLE)
radios described in [20]–[23]. Unlike the existing fast-startup
XOs that are based on standard or I/O voltages to power-
up their inverter-like or active-load amplifiers [6], [11]–[14],
our proposed XO is ultralow-voltage (ULV)-enabled by using
single-/multistage resistive-load amplifiers. This circumvents
from the ineluctable voltage headroom limit, rendering it
compatible with the ULV application. Specifically, we pro-
pose a dual-mode gm scheme and a scalable self-reference
chirp injection (SSCI) technique for the XO to surmount the
operating challenges in both startup and steady state (Fig. 3).
The reported XO includes load capacitors of 6 pF and suits
common commercially available crystals. Yet the technique
can also be applied to crystals with different load capacitances.

Fig. 3. Overview of the proposed XO and illustration of tS improvement by
two techniques: SSCI and inductive three-stage gm . L M , CM , and RM are the
modeled inductance, capacitance, and resistance of the crystal, respectively,
whereas CS is the crystal’s stray capacitance.

This paper is expanded from [24], with additional details and
measurement results.

After the introduction, Section II details the proposed dual-
mode gm scheme and SSCI. Section III presents the transistor-
level design of the sub-0.5-V XO. Section IV summarizes the
experimental results, and finally, Section V draws conclusions.

II. FAST-STARTUP XO USING DUAL-MODE Gm

SCHEME AND SSCI

For a crystal’s resonant frequency ( fm) at tens of megahertz,
its ts (milliseconds) dominates the “ON” latency of a duty-
cycled radio, raising the average power consumption. As well,
for energy-limited EH sources, the startup energy (ES) of the
XO is crucial as it may demand a large instant current from
the EH source or reservoir. Recent XOs [6], [11]–[15] have
succeeded in reducing both ts and ES . Herein, we propose two
techniques: dual-mode gm and SSCI, for balancing the XO
performances in both startup (i.e., ts and ES) and steady state
[i.e., power consumption and phase noise (PN)]. The envelope
of the XO during the startup at time t is

Aenv(t) = Ai · e
RN −RM

2L M
t

(1)

where Ai is the initial amplitude and RN is the negative
resistance of the overall impedance viewed from the crystal
core (details in Section II-B). L M and RM are the motional
inductance and resistance of the crystal, respectively. The aim
of SSCI is to increase Ai instantly after enabling the XO,
while the dual-mode gm allows a boosted RN afterward. They
together bring down tS without momentarily raising the startup
power, culminating in a lower ES and a relaxed power-source
design, with details presented in the following.

A. Scalable Self-Reference Chirp Injection

Signal injection to the XO can bring down ts if the injection
frequency is close to fm of the crystal [12]. Instead of waiting
for the XO to build up its oscillation amplitude, an auxiliary
oscillator (AO) can be used to excite the crystal. Yet, due to
the high-Q nature of the crystal, such signal injection is only
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Fig. 4. General illustration of different signal-injection techniques in the
frequency domain. Assuming the total power of each injection signal is
similar, the crystal absorbs more power from CFI than CI since the CI
spectrum spreads over a broader band.

effective if its frequency does not deviate by >0.5% from
fm [6]. Several signal-injection techniques for kick-starting the
XO have been reported. They can be categorized into three
groups: constant frequency injection (CFI) [11], [14], [15],
dithering injection [6], and chirp injection (CI) [12].

CFI injects a clock signal into the crystal with a constant
frequency close to fm , as illustrated in the frequency domain
(Fig. 4). With a constant frequency and narrow bandwidth
(e.g., full-width at half-maximum of the 7.7-μs pulse in [14]:
156 kHz), a clock frequency precisely matching fm is essential
to excite the crystal. This involves calibration as well as a
delicate design for the AO which will be challenging in a
sub-0.5-V design. As an example, the XO in [14] achieves
ts values of 58/10/2 μs from 1.84/10/50 MHz crystals. Yet it
has a supply voltage of 1 V. Also, the ring oscillator entails
frequency calibration after fabrication.

Dithering injection toggles the AO frequencies between
two values by compensating the frequency deviation of the
injection signal caused by temperature and voltage variations.
As such, the injection signal can cover a wider frequency range
than that of CFI. Still, trimming is necessary to compensate
the process variation on the AO. Compared with CFI, its effect
on shortening ts is lower, since the signal power is spread to
a wider spectrum. As a result, there is smaller power to be
absorbed by the crystal at fm . For instance, the XO in [6]
exhibits a slashed tS of <400 μs by using dithered-signal
injection (dithered step size: 2%), but it still demands trimming
to manage the process variations on the injection oscillator.

Here, we consider CI to be more robust and inexpensive,
as it relies on a frequency-rich signal to excite the crystal and
avoids frequency calibration. The principle is alike dithering
but covers a wider frequency range. It gradually sweeps the
oscillating frequency and progressively decreases/increases the
frequency. As such, this chirping sequence can generate a
spectrum between the highest frequency fH and the lowest
frequency fL , as evinced by its Fourier transform [25]. If fL <
fm < fH regardless of process, voltage, and temperature
(PVT) variations, the power will be delivered to the crystal
persistently. Despite its weaker effectiveness on tS reduction
since the power spreads to a wider band, CI has the benefit
of no trimming on the AO. It is especially suitable for low-
cost and ULV radios, where the frequency variation of the
AO against voltage and temperature can be more exacerbated.

TABLE I

OVERVIEW OF DIFFERENT SIGNAL-INJECTION
TECHNIQUES TO KICK-START THE XO

Fig. 5. Proposed SSCI. It generates a chirping signal to kick-start the XO
using an untrimmed RO with relaxed precision. The FSM provides feasibility
to scale tCI, accommodating different crystal packages (i.e., L M and CS).

In [12], CI was applied together with the RN -boosting tech-
nique, showing a tS of 158 μs without trimming or calibration
on the AO. Still, the related RC-sweeping unit for modulating
the frequency of the AO is area hungry (estimated ∼90% of the
chip area) due to its large time constant (at the order of 10 μs)
for generating the chirping sequence. Table I summarizes the
key features of the three signal-injection techniques.

To avoid the pitfalls of [12], we introduce the SSCI (Fig. 5)
that only entails an untrimmed oscillator with relaxed preci-
sion. Its frequency range can easily cover fm variation against
PVT. Unlike the RC-based chirping [12], here we incorporate
a five-stage RO with a finite state machine (FSM) to control
the oscillating frequency of the RO via a cap-bank. Hence,
the chirping sequence can be generated by referencing its
own signal and requiring no area-hungry RC-units to modulate
the oscillating frequency. The FSM counts the number of
pulses and sequentially raises COSC by sending the control
signal fctrl to the RO. In addition, compared to the analog
sweeping technique in [12], the FSM can digitally scale the
total injection time (tCI), decided by the number of exciting
cycles at each cap-bank value COSC

tCI = N ×
∑

i

ti (2)

where N is the number of cycles to repeat at each COSC, and ti
is the period of a single cycle at i th COSC. The average ampli-
tude of oscillation on the crystal after the chirping sequence is
proportional to

√
tCI, as suggested from the Fourier transform

of the chirping sequence [25] and also the time-domain
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Fig. 6. XO using (a) one-single gm (AXO−1) for the steady-state and
(b) three-stage gm (AXO−3) for the startup.

analysis in [12]. Thus, N can be programmed to adjust tCI,
rendering the XO easily compatible with different crystal
parameters, i.e., an optimum tCI depends on L M , RM and
RN (CS) [12]. This digital-intensive architecture is more area
efficient. The oscillation signal at the RO has varying duty-
cycle with VT-variation. To maximize the injection energy
(i.e., 50% duty cycle), the chirp-modulated signal is a div-
by-2 output of the RO. This output serves as both the exciting
signal for the crystal via the output driver, and the trigger
signal for the FSM. The RO is powered down by the FSM
automatically after the injection.

B. Dual-Mode gm Scheme

The XO using a one-stage gm (AXO−1), especially for the
Pierce oscillator, is popular as it can optimize the steady-state
PN [6], [12]–[14], [26]. The gm offers a negative resistance
compensating the equivalent resistance of the crystal. Its
value also determines the growth of the oscillation ampli-
tude before the XO reaches the steady state. As shown in
Fig. 6(a), by omitting the resistive loss induced by AXO−1,
the impedance between the I/O (Zamp−1) becomes

Zamp−1 = − gm

4ω2
0C2

L

+ 1

jω0CL
(3)

where CL is the designated crystal’s load capacitance and ω0 is
the angular oscillating frequency 2π f0. Since Zamp is shunted
by the crystal’s stray capacitance (CS), the negative resistance
(RN ) of the overall impedance looking from the crystal core
(ZC) is affected

RN ≡−Re(Zc)= −Re(Zamp)

[ω0CsRe(Zamp)]2+[1−ω0CsIm(Zamp)]2 .

(4)

If ω0CS |Zamp| � 1, we can have RN ≈ −Re(Zamp) that
matches the expression in [6] for AXO−1. A large RN favors
more tS reduction according to (1). Yet, for |Zamp| to be
comparable with 1/ω0CS [i.e., a higher gm and thus |Re(Zamp)|
to speed up the startup], we have to cogitate the effect from CS .
Thus, we can deduce the specific RN of AXO−1 (i.e., RN,1)
from (4) as given by

RN,1 = 4gmC2
L

(gmCs)
2 + 16C2

Lω2
0(CL + CS)2 . (5)

Fig. 7. Plot of the impedances as function of Co1 and Co2. (a) Re(Zamp−3).
(b) Im(Zamp−3). (c) Re(ZC−3). (d) Im(ZC−3). For (a) and (b), the contours
where Re(Zamp−3) = 0 k� and Im(Zamp−3) = 0 k� are depicted with red
lines.

Taking the derivative of (5), we can obtain the maximum value
of RN,1 with respect to gm at a fixed CL

RN,1,max = CL

2ω0Cs(CL + Cs)
(6)

where we apply gm = 4ω0CL(1 + CL/Cs). Obviously,
Im(Zamp−1) can only be negative (capacitive) for AXO−1, and
RN,1 has an upper limit if only gm is the sizing parame-
ter [12], [13]. For instance, RN,1 is limited to 1.2 k� with
CS = 2 pF, f0 = 24 MHz, and CL = 6 pF, even if we
apply an oversized gm = 14.5 mS. There were efforts to raise
RN,1 by increasing gm or tuning CL temporarily during the
startup [13], [26], [27]. Yet, increasing gm incurs in larger
power consumption and is unfavorable toward reduction of ES .
Furthermore, RN,1 is bound by (6), and is maximally 1/2ω0CS

(i.e., 1.66 k� in the above example when CL � CS and
gm ≈ 4ω0C2

L/Cs).
Inspecting (4), if a positive Im(Zamp) is possible to coun-

teract the effect of CS , RN can be boosted to surmount the
aforesaid RN -limit. Our idea is to mimic a microhenry-range
inductor on chip for this purpose. Interestingly, it is found
that a three-stage gm (AXO−3) with designated capacitive
loads (Zo1−2) can effectively mimic an inductive effect during
the startup [Fig. 6(b)]. Although a multistage gm has been
applied in [28] to save the XO’s steady-state power, this paper
explores first its inductive feature for tS reduction. For AXO−3,
we define its Zamp as Zamp−3 as given by

Zamp−3

= −Gm,eff

4ω2
0C2

L(1 + jω0ro1Co1)(1 + jω0ro2Co2)
+ 1

jω0CL

= − Gm,eff (1 − ω2
0ro1Co1ro2Co2)

4ω2
0C2

L [1 + (ω0ro1Co1)2][1 + (ω0ro2Co2)2]
+ 1

jω0CL

{
1− Gm,eff (ro1Co1 + ro2Co2)

4CL[1 + (ω0ro1Co1)
2][1 + (ω0ro2Co2)

2]
}

(7)
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where Gm,eff = gm1 ·ro1 ·gm2 ·ro2 ·gm3 and Zo1/2 is represented
as a parallel load of ro1/2 and Co1/2. Since at 24 MHz the
impedance of 2CL at the output (553 �) is usually much
smaller than the resistive load of the third stage, its resistive
part is neglected. Manifested from (7), both the real and
imaginary parts of Zamp−3 are unbounded between positive
and negative. For a positive Im(Zamp−3), (8) has to be satisfied

Gm,eff(ro1Co1 + ro2Co2)

[1 + (ω0ro1Co1)
2][1 + (ω0ro2Co2)

2] > 4CL . (8)

Alternatively, for a negative Re(Zamp−3), we set
1/(ro1,2Co1,2) > ω0. In a practical design, the complete
independent variables are only Co1,2 and gm1,2,3 as ro1,2
are correlated with gm1,2, especially when the voltage
headroom is restrained. Fig. 7(a) and (b) plots Re(Zamp−3)
and Im(Zamp−3), as a function of Co1,2, respectively, where
we set gm1,2 = 0.4 mS, gm,3 = 1.5 mS, ro1,2 = 7 k�,
CL = 6 pF, and ω0 = 2π× 24 MHz. At small Co1,2, we have
Re(Zamp−3) = −Gm,eff /4ω2

0C2
L . Re(Zamp−3) increases

to 0 k� when we enlarge Co1.2, and turn to positive if
Co1Co2 > 1/ω2

0ro1ro2 [red line in Fig. 7(a)].
For Im(Zamp−3), it is negative (capacitive) for sufficient

small or large Co1,2, but can be turned to positive (inductive)
within a specific range, defined by the quadratic equation in (8)
and shown in Fig. 7(b). By solving (8), the desired inductive
effect can be achieved. For example, for Co1 = Co2 = 0.5 pF,
the desirable inductive impedance Zamp−3 = −1.6 + 1.2j k�
can be achieved.

Fig. 7(c) and (d) shows the changes of Re(ZC−3) and
Im(ZC−3) after paralleling AXO−3, respectively, with CS = 2
pF. When Co1 and Co2 are small, the value of Re(ZC−3) (i.e.,
−RN,3) is alike to that of AXO−1 and is bounded by (5),
in which gm is replaced by Gm,eff that is ∼ −1.2 k�. Such
limitation can be surpassed here with an inductive Zamp−3 as
derived in Fig. 7(b). For instance, for Co1 = Co2 = 0.5 pF,
we can have Re(ZC−3) = −2.4 k� due to the inductive
AXO−3. Thus, a higher RN can be achieved even with similar
power consumption when compared to the AXO−1, enabling
an energy-efficient startup. Due to the intricate expression
of RN,3, its optimization is done numerically, as shown
in Fig. 7(c), before proceeding to transistor- level implementa-
tion. Besides, our technique is also applicable to different f0.
Using a similar mathematical model derived by (4) and (7)
and changing the total gm and Co1,2 correspondingly, we have
simulated to boost the RN by 6.1× at f0 = 10 MHz and
7.4× at f0 = 50 MHz with the AXO−3 compared to AXO−1.
Since reference clock at 16/24 MHz is common for BLE
as [6] and [13] reported, thus in this paper, we only focus
on f0 = 16 and 24 MHz.

Apparently, for the same power budget, AXO−3 is inferior
to AXO−1 in terms of the steady-state PN, as each stage
shares a smaller bias current and the noises accumulate. Also,
for Im(ZC−3) that determines the exact oscillating frequency
of the XO, it deviates from the designated value due to
the presence of Co1 and Co2 [Fig. 7(d)]. This affects the
accuracy of f0. Thus, it is desirable to implement a dual-
mode gm scheme that can balance the startup and steady-state
performances. During the startup where the PN and accuracy

Fig. 8. Circuit implementation of (a) AXO−1 and (b) AXO−3.

of f0 are irrelevant, AXO−3 is enabled and connected to the
crystal to attain a larger RN for fast startup. When the crystal
has gained sufficient energy for oscillation, AXO−3 is OFF

and disconnected from the crystal while AXO−1 takes over
to sustain the oscillation. As a result, the XO can benefit
from both AXO−3 (fast startup) and AXO−1 (low PN and
accurate f0).

III. TRANSISTOR-LEVEL IMPLEMENTATION

The core elements of the XO (e.g., AXO−1, AXO−3, and RO)
are designed to operate below a 0.5-V VDD. Only the static
and dc circuits (digital logic and constant-gm bias circuit)
operate at 0.7 V to facilitate the design. These circuits together
consume <5 μA and are mostly powered-off during the steady
state. Thus, the 0.7-V supply can be easily generated by an
on-chip switched-capacitor charge pump and shared with other
blocks at the system level as described in [22].

Both AXO−1 and AXO−3 are based on subthresh-
old common-source (CS) amplifiers with resistive loads
[Fig. 8(a) and (b)]. Unlike other solutions that use current-
source loads [6], [13], [14], the resistive load aids to preserve a
moderate gm even with VDD < 0.35 V, for a small bias current
(simulated at Idc = 100 μA). For instance, the simulated gm

of AXO−1 is 1.3 mS at VDD = 0.3 V and −40 °C, being
4× higher than that of the current-source load (assuming an
identical gm with VDD = 0.35 V at 20 °C). Furthermore,
at high temperature, the intrinsic output resistance of the
transistor decreases rapidly. This affects the stability of RN

and causes variation on ts , especially for AXO−3. The AXO−1
with resistive load has a tradeoff of lower immunity to power
supply noise (noise power from VDD modulated to the output
of XO with a resistive load that is 3 dB larger than its
current-source-load counterpart at 1-kHz offset). Also, it has a
large f0 variation since the gm of AXO−1 is not fixed. Still, this
is manageable for the BLE standard (<±50 ppm [29]), as well
as other IoT protocols (e.g., ZigBee: ±40 ppm). A small
nominal Idc of 100 μA is adequate for the expected PN.

AXO−1 is self-biased by a feedback resistor RF , whereas
AXO−3 is an ac-coupled three-stage CS amplifier aided by
a constant-gm bias circuit. As revealed by (7), the gm of the
AXO−3 has a considerable impact on RN,3. Thus, the constant-
gm bias circuit secures AXO−3 to be inductive, and a stable
RN,3 for robust-and-fast startup against PVT. The channel
lengths of the transistors are chosen such that their out-
put resistances are ∼10× larger than the resistors R1−3.
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Fig. 9. (a) Locus plot of the Zamp−1,−3 against frequency. (b) Simulated
RN,1 and RN,3 with a fixed total gm budget of 2.3 mS, and the boosting
ratio against frequency.

This soothes temperature dependence of RN,3 as ro1−3 are
then dominated by R1−3. On the other hand, the widths of
the transistors are deterministic of the parasitic capacitances.
Especially for CGS of the transistor, it not only is sensitive
to the operating conditions and affects Co1,2 but also forms a
capacitive divider with the ac-coupling network and degrades
the gain; the gain attenuation should be controlled within 5%
to depress their overall impacts. AXO−3 is designed to have
similar power consumption (∼100 μA) as AXO−1. As such,
the power consumption does not vary instantaneously, easing
the design and layout of the power supply. CMOS switches are
inserted to each current branch such that AXO−1 or AXO−3 can
be isolated from the crystal while lowering their leakage power
(simulated <14 nW at 0.35 V and 20 °C) when disabled. They
have minimal channel lengths and adequate widths such that
their ON-resistances are negligible when compared with R1−3.

Both the parasitic capacitances of the transistors and the
finite I/O resistance of AXO−3 will affect the accuracy of the
derivation from (7). Thus, RN,3 should be further optimized
via simulation. The total gm budget is 2.3 mS (total bias
current: 100 μA, assuming a gm/ID = 23 V−1), and ro1−3 are
set according to the gm of each gain stage. Fig. 9(a) shows the
locus plots of Zamp−1 and Zamp−3 implemented with practical
transistors and integrated passives. Zamp−1 is capacitive over
all frequencies, while Zamp−3 is inductive over the 13-to-
46-MHz range, rendering its compatible with different f0.
Optimized at the most popular XO frequency of 24 MHz,
the optimum RN,3 is 2.4 k� after paralleling it with a CS of
2 pF. This result is ∼9× higher than RN,1 under the same gm

budget and surpasses RN,1,max [Fig. 9(b)]. The boosting effect
is insensitive to the frequency between 15 and 34 MHz, under
RN,3/RN,1 > 6.

The Monte-Carlo-simulated RN,3 (mean) is >9.1× higher
than RN,1, and the boosting factor is immune to Cs = 1–3 pF,
as specified from the crystal manufacturer (Fig. 10). We design
RN,1 to be >50 � against PVT to compensate the resistive
loss of the crystal (measured RM of the crystal: 19 �), and
safeguard the oscillation as well as PN of the XO.

Ideally, AXO−3 should be enabled for the entire startup
phase. Yet the gm values of M1−3 deviate from their small-
signal values when the oscillation amplitude is growing. This
results in an aggravated RN,3. Thus, the optimum active time
of AXO−3tsw is the time when RN,3 ≈ RN,1, which means

Fig. 10. Monte-Carlo-simulated RN ( f0 = 24 MHz, N = 300, VDD =
0.35 V).

Fig. 11. (a) Monte-Carlo-simulated fL with VDD = 0.4 V and T = 90 °C.
(b) Monte-Carlo-simulated fH with VDD = 0.3 V and T = −40 °C. N = 30
for both cases.

AXO−3 no longer helps ts reduction. The optimal tsw can be
found via simulations with measured crystal parameters to
avoid any extra detection and control mechanism.

To realize the SSCI, a five-stage RO is constituted by
CS-amplifiers with source degeneration. Compared with the
RO with inverters or relaxation oscillator, an RO with
CS-amplifiers balances between the frequency stability and
compatibility with the sub-0.5-V VDD. The source resistor
(RS in Fig. 5) also reduces the variation of oscillating
frequency against VDD. From the simulation, the frequency
variation of RO is reduced by ∼20% over a 0.3-to-0.5 V VDD.
RD is set to 36 k�. The current consumption of the RO is
20 μA. We implemented the div-by-2 unit and FSM with a
standard logic.

We designed the fH and fL of the SSCI module as 36 and
12 MHz, respectively, which are chosen such that fL < fm <
fH is satisfied even with PVT variation (Fig. 11). The total
size of the COSC is simulated to be 135 fF to output an fL

of 12 MHz (after div-by-2). Then, the resolution of the cap-
bank should be determined. This is decided by the minimum
duration of tCI; since for a complete chirping sequence all
of the states need to be swept at least once, the minimum
tCI (i.e., N = 1) is set by the resolution (number of pulses),
as depicted in (2). The optimum tCI, according to [12] and the
measured crystal parameter, is derived as 4.6 μs. Thus, we set
COSC as a binary-coded 6-bit cap-bank (unit cap: 2.14 fF),
corresponding to a minimum tCI of 4 μs with the designate
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Fig. 12. Increase in ts caused by the deviation of tCI from the optimum
duration.

Fig. 13. (a) Chip micrograph. (b) Area breakdown of the XO.

fH and fL . Even though there is a discrepancy between
the applied and optimum tCI, the ts is almost unaffected as
the tCI is only present for a short period when compared
with ts . As manifested in Section II-A, the amplitude of
oscillation after the CI is proportional to

√
tCI. Thus, even the

applied tCI is 13% shorter than the optimum in our case, the
amplitude is only 7% smaller. Thanks to the high growth of
the oscillation amplitude of the AXO−3 [time constant in (1):
9.33 μs], the discrepancy between the applied and optimum
tCI can be compensated by the AXO−3 quickly, e.g., the 0.6
μs discrepancy is countervailed by the growth of oscillation
amplitude in that 0.6 μs (∼1.07×). No significant difference
on ts will emerge, even with PVT variation on the tCI (Fig. 12).

The RO generates an oscillating signal at 2 fH with COSC =
0 fF (with oscillating frequency governed by the parasitic
capacitances), and COSC is progressively increased by the FSM
bit-by-bit according to N to COSC = 135 fF whereas the RO
oscillates at 2 fL . In this paper, the variable N is digitally
configurable among 1, 2, 4, and 8.

IV. EXPERIMENTAL RESULTS

The XO was fabricated in 65-nm CMOS with fixed on-
chip CL of 6 pF. Extra cap-bank can be added to the XO for
finer control of CL if necessary. The active area is 0.023 mm2

[Fig. 13(a)], of which 36% corresponds to the load capacitors
[Fig. 13(b)]. The target f0 can be flexible between 16 and
24 MHz. The FSM (i.e., tCI) as well as the enabling of the VDD
are governed by a field-programmable-gate-array (Fig. 14).
We first verify the SSCI functionality. Fig. 15(a) shows the
measurement of the oscillating frequency of the RO (after div-
by-2) against COSC, which is consistent with the post-layout
simulation. The frequency range of the chirping sequence can
safely cover the designated fm against voltage and temperature
variations. The average fL and fH across five dies at room

Fig. 14. Measurement setup of the XO.

Fig. 15. (a) Measured and simulated oscillating frequencies of the RO versus
COSC at different conditions, robust to cover f0 of the crystal even with
VDD and temperature variations. (b) Measured chirping sequence (N = 1).
(c) Injection duration tCI against N . For the latter two figures, VDD = 0.35 V,
T = 20 °C.

temperature are 10.93 (σ : 0.32 MHz) and 35.96 MHz (σ :
1.21 MHz), respectively. Fig. 15(b) confirms the chirping
sequence with N = 1 and Fig. 15(c) shows the duration
of tCI against N . This implies that the SSCI can generate a
chirping sequence with variable tCI (4–32 μs in this paper)
to accommodate different crystal parameters without resorting
from area-hungry RC-units.

The XO was then tested with a 24-MHz crystal (package:
3.2 × 2.5 mm2) without any startup aid at room temperature
(20 °C) and VDD = 0.35 V. The measured crystal parameters
L M , RM , CM , and CS are 11.1 mH, 19 �, 3.95 fF, and 1.3 pF,
respectively. Under these conditions, we have ts = 1.3 ms
[Fig. 16(a)]. ts is shortened to 530 μs when AXO−3 is enabled
during the startup.

Since directly measuring RN by inserting a resistance in
series with the crystal is not viable (RN is the real part of the
impedance seen by the crystal core, which cannot be separated
from the CS), we have to estimate RN,1 and RN,3 from the
growth of the oscillation amplitude according to (1), which
can be rewritten as

ln

(
Aenv(t0 + �t)

Aenv(t0)

)
= RN − RM

2L M
· �t (9)
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Fig. 16. Measured startup waveform (a) without startup aid and (b) with
SSCI and AXO−3 enabled.

where t0 is the starting time and �t is the elapsed time.
Hence, by measuring the growth of the oscillation amplitude
within a specific time interval, the RN of the XO can be
estimated. For AXO−1, the growth of oscillation is 1.01×/μs,
and therefore RN,1 is calculated as 230 � (Fig. 17), which is
close to the prediction as described in Section III. Similarly,
RN,3 ≈ 2.2 k� is found. The achieved RN -boosting factor
is 9.6×, coinciding with the simulation and evincing the
functionality of AXO−3.

Owing to two reasons, the reduction of ts is not commensu-
rate with the RN -boosting ratio between AXO−3 and AXO−1.
First, as described in Section III, M1−3 will deviate from their
nominal operating points and deteriorate RN,3. This can be
revealed by measuring ts against tsw (Fig. 18). When tsw is
short (<60 μs) where M1−3 are in the subthreshold region,
the small-signal model is still valid to estimate ts against
tsw [i.e., slope of the curve (∼−10) closely matches with
−RN,3/RN,1 + 1]. As tsw further increases, the oscillation
drives M1−3 away from its original operating point and
worsens RN,3. Hence, the slope of the curve declines and
eventually reaches zero whereas the AXO−3 no longer aids ts -
reduction. Second, the XO entails an overhead time to enter
the steady state after switching to AXO−1. After switching to
AXO−1, the XO still takes ∼380 μs to enter the steady state.
The improvement on ts here is limited by the nonideality of
the ULV AXO−3. In fact, for the amplifiers with standard I/O
voltage and higher output swing, the reduction of ts should
be more profound and better matched with the RN -boosting
ratio.

Fig. 17. Estimated RN from the exponential growth of XOUT’s amplitude
(before the transistors enter triode/cutoff region).

Fig. 18. Total ts versus tsw, the enabling time of AXO−3 (without SSCI).

With both AXO−3 and SSCI enabled, tS is further shortened
to 400 μs (3.3× reduction) and the corresponding ES is
14.2 nJ (2.8× reduction) [Fig. 16(b)]. When switching from
AXO−3 to AXO−1 that have different output impedances and
thus operating frequency, there is an instantaneous change
of the output swing, since the magnitude of current passing
through the crystal does not change abruptly. The percentage
of energy consumed in the startup phase by the SSCI, AXO−3,
and AXO−1 is 7%, 39%, and 53%, respectively. It has been
verified that tsw can tolerate ±50% uncertainty for <10% tS

variation, implying that an adequate ts can be obtained even
with non-optimal tsw (e.g., variation on PVT and crystal’s
parameters). This also justifies that the existed RO will be
good enough to control tsw, avoiding any external detection
and control mechanism.

For the transient frequency of the XO, it takes ∼300 μs
to settle for a ±20 ppm f0 accuracy (i.e., 50 kHz drifting
from the center frequency of 2.44 GHz in a packet, as defined
in [29]). This result is 3.5× faster than the case without startup
aid (Fig. 19). Fig. 20 plots the summary of the reduction in
tS and ES with different startup aids. The steady-state power
is 31.8 μW at 0.35 V, and the PN is −134 dBc/Hz at 1-kHz
offset [Fig. 21(a)], being adequate for most IoT applications
and comparable to other state-of-the-art XOs with a standard
voltage (e.g., [4], it reports a PN of −136 dBc/Hz at 1 kHz
and at f0 = 26 MHz). As illustrated in Fig. 21(a), the PN of
the AXO−1 is 15 dB better than that of AXO−3, confirming the
poorer PN performance of the AXO−3.
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TABLE II

PERFORMANCE SUMMARY AND COMPARISON WITH RECENT ART

Fig. 19. Transient f0 profiles of the XO (VDD = 0.35 V, T = 20 °C).

In terms of robustness, we confirm that the XO can uphold
a steady-state output swing >80% of VDD for VDD = 0.3–
0.5 V [Fig. 21(b)]. For the variation of ts against VDD, it is
measured <25% from its mean (400 μs) for VDD = 0.3–
0.5 V [Fig. 22(a)]. Only the RO of the SSCI fails to start if
VDD drops down to 0.25 V, but AXO−3 is still in place to aid
tS reduction. The frequency deviation (� f0/ f0) is 19.7 ppm
(17.9 ppm) across 0.25 (0.3 V) to 0.5 V [Fig. 22(b)]. Over −40
°C–90 °C, tS variation is <7.5% [Fig. 22(c)], and the � f0/ f0
is 14.1 ppm [Fig. 22(d)]. Similar results were obtained for
a 16-MHz crystal [i.e., � f0/ f0 = 13.4 ppm over 0.3–0.5 V,
� f0/ f0 = 21.9 ppm over −40 °C–90 °C, and tS variation:
9.8%].

In another test, the XO was powered by a small com-
mercial solar cell (1 × 3.8 cm2) in an indoor environment.

Fig. 20. Progress of ES and ts reduction of the XO ( f0 = 24 MHz) with
different startup aids.

Fig. 21. (a) PN of the XO with AXO−1 and AXO−3 as core versus offset
frequency ( f0 = 24 MHz). (b) Output voltage swing of the XO against VDD.

Its nominal output voltage is close to 0.35 V at a solar
irradiance of 0.4 mW/cm2. Then, the output voltage of the
solar cell is swept by altering the light reaching the solar cell.
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Fig. 22. Measured XO ( f0 = 24 MHz) performances. (a) Startup time
against VDD. (b) Frequency stability against VDD. (c) Startup time against
temperature. (d) Frequency stability against temperature.

Fig. 23. Startup energy of XOs from the literature versus their core VDD.
Some of their ES values (marked with #) were not reported, thus they are
estimated through the multiplication of their startup times by the steady-state
powers.

The measured metrics of the XO powered by the solar
cell are comparable to those using a typical power supply
[Fig. 22(a) and (b)].

Table II and Fig. 23 benchmark the performance of the
XO with the prior art. In terms of Es , this paper is >2.6×
better than [13] and slightly higher than [14]. Furthermore, the
proposed circuit can be considered in the vanguard, since it
proves the feasibility of regulation-free operation under a wide
range of sub-0.5-V VDD, while conforming to the frequency-
stability specification of the BLE standard.

V. CONCLUSION

A regulation-free sub-0.5-V XO for energy-harvesting BLE
radios has been reported. Two circuit techniques, dual-mode
gm and SSCI, are introduced to reduce the startup time ts
and energy Es . The dual-mode gm exploits the inductive
feature of a three-stage gm (AXO−3) to counteract CS of
the crystal during the startup, and the low-noise feature of a

one-stage gm (AXO−1) to preserve the PN in the steady state.
Both AXO−1 and AXO−3 are ULV-enabled using resistive-load
CS amplifiers. For the SSCI, a scalable chirping sequence
effectively raises the initial oscillation amplitude of the crystal
under different conditions, avoiding the need of a precisely
trimmed AO. The XO prototyped in 65-nm CMOS has a
compact area (0.023 mm2) that is >3.1× smaller than the prior
art. The measured ts and Es of the XO, with a 24-MHz crystal,
are 400 μs and 14.2 nJ, respectively. The frequency stability
against voltage (0.3–0.5 V) is 17.9 ppm and temperature
(−40 °C–90 °C) is 14.1 ppm; both conform to the BLE
standard.
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