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Abstract— A self-body-biasing technique is proposed for
differential-drive cross-coupled (DDCC) rectifier, with its pro-
found application in far-field RF energy-harvesting systems.
The conventional source-to-body, and the proposed technique
known as Lower DC Feeding (LDCF), were fabricated in the
130-nm CMOS and compared at the operation frequency of
500 MHz, 953 MHz and 2 GHz along with a corresponding
load of 2 k�, 10 k� and 50 k�. The technique allows the PMOS
transistors to operate with a dynamic threshold voltage (Vt h)
which improves the power conversion efficiency (PCE) when the
rectifier is operating at a smaller received power. A 9.5% of
improvement is achieved at the peak PCE when the rectifier is
operating at 953 MHz, and driving a 10 k� load. A maximum
PCE of 73.9% is measured at 2 GHz when driving a 2-k�
load. The LDCF technique also offers a self-limiting capability
for its output voltage, by reducing the PCE at larger received
power. A limit-voltage level of 3.5 V is measured irrespective
to the operating frequency and load. This capability aids the
protection of the subsequent circuits in a wireless sensor from
being overpowered.

Index Terms— Body biasing, passive radio frequency identifica-
tion (RFID), rectifier, RF-to-dc conversion, RF energy harvesting,
wireless power transferring.

I. INTRODUCTION

INTERNET Of Things (IoT) technology has recently gone
through a significant evolution as the obsession in this field

is in its ability to simultaneously connect and remotely control
any physical objects. IoT usually incorporates RFID systems
and other identification schemes [1]. Such small systems with
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wireless communication capability, enable automated object
identification in numerous applications such as monitoring
environment, tracking objects, contact-less identification and
implantable medical devices (IMD) [2]–[4].

Unlike many other mobile devices, a battery is not appropri-
ate for these applications since it requires routine maintenance,
subjected to interruption in operation, and its replacement is an
inevitable routine which incurs in additional cost. Moreover,
integrating a battery consumes additional space which is
undesirable for such systems [5].

An energy harvester extracts ambient or environmental
energy to provide sufficient power for its applications. The
harvesters are able to convert the energy emanating from vibra-
tion, sun, heat and other sources [6]–[9] to dc voltages. How-
ever, they suffer from a common constraint of being dependent
on uncontrolled ambient sources. On the other hand, an RF
energy harvesting (RFEH) system overcomes this constraint
since radio frequency (RF) signals are the most pervasive
ambient energy sources. In such systems, RF power can simply
be delivered to the targeted applications when required using
intentional radiators based on RF-powered network architec-
ture such as wireless power transferring (WPT) techniques
which enable the systems to be battery-less, low cost and
maintenance free [10]. WPT techniques can be categorized
into three groups which are far-field non-coupling, near-
field non-resonant coupling, and near-field resonant coupling.
A far-field non-coupling power transferring technique pro-
vides a longer communication distance which are mainly
used in passive UHF RFID or MMID. However, it suf-
fers from low power conversion efficiency (PCE). It cap-
tures incident RF signals and converts it into dc volt-
age through an antenna and a subsequent rectification
device [11].

The dc voltage level at the rectifier output is consid-
erably affected by both the threshold voltage and leakage
current of integrated switching devices (diodes or MOS
transistors). Several technical contributions and studies have
been reported to either mitigate or completely suppress the
MOS transistors threshold voltage of the rectifier [12]–[15].
Although the static threshold voltage cancellation technique
improves the rectifier performance in forward-bias, the leak-
age current noticeably increases in reverse-bias resulting in
PCE degradation.

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MOGHADDAM et al.: 73.9%-EFFICIENCY CMOS RECTIFIER USING AN LDCF SELF-BODY-BIASING TECHNIQUE 993

Fig. 1. Block diagram of a typical far-field RF energy harvesting (RFEH)
system in a wireless sensor network.

Dynamic threshold voltage techniques have been proposed
to improve the rectifier performance for Dickson-based charge-
pump [16]. In [17], an additional circuit is used to control
the threshold voltage. In [5], two adaptive threshold volt-
age compensation schemes have been proposed to dimin-
ish the leakage current in reverse bias and to reduce the
threshold voltage in forward-bias without requiring triple-well
transistors.

In [18], a differential-drive cross-coupled (DDCC) rectifier
is proposed to reduce the threshold voltage and leakage
current simultaneously. The structure has shown a considerable
enhanced performance in terms of PCE. To the best of authors’
knowledge, the DDCC rectifiers have shown considerable
larger PCE when compared with conventional charge pump
such as the Dickson topology [19]. Regardless of many
reports on improving the rectifier performance, few works have
studied the body biasing of MOS transistors integrated in the
rectifier [17], [20]–[22] based on the Dickson charge-pump
topology. In this work, a novel self-body biasing technique is
presented for the DDCC topology without any extra circuits
using local nodes, which allows PMOS transistors to have
a scalable threshold voltage. Moreover, with this technique
the rectifier operates with dynamic PCE which at lower
received power implies improved PCE while at larger received
power effectively decreases PCE and limits the rectifier output
voltage.

This paper is organized as follows: a background review
and a brief system operation is presented in Section II.
A self-body biasing technique is presented along with detailed
description in Section III. In Section IV measurement results
and discussion are presented and finally the paper is concluded
in Section V.

II. SYSTEM DESCRIPTION AND

THRESHOLD VOLTAGE EFFECT

A typical block diagram of a far-field RFEH system is
depicted in Fig. 1. It consists of two main parts which are
the power and control unit where the power is generated in
the power unit. The power path is depicted in Fig. 1. This unit
is responsible to deliver the extracted power to the load and
the control unit. The control signals, depicted in Fig. 1, are
generated by the control unit to tune the power unit parameters
in order to maximize or regulate the output power.

The RF signals emanating from a central hub or reader
are collected and converted into signal voltages by an RF
antenna. The extracted signal voltages can be modeled as an
equivalent voltage source (VS) and a source resistance (RS).
An impedance matching network is usually required to maxi-
mize the available power for the rectifier. The available power
can be calculated as V 2

S /(8RS) when a proper matching
network is considered [23].

In RFEH systems, the received power at the antenna is
usually weak due to limited allowable power levels regulated
by the FCC [24] and the degrading propagation loss [25], [26].
Recalling Friis transmission equation, the available power
significantly drops with the increase in the distance between
the source and the system. Considering multi-path fading [23],
the received power faces even more attenuation.

An RF-to-dc converter, also known as rectifier, converts the
received power to a dc voltage. Depending on the structure of
the RFEH, the rectifier boosts the converted voltage level if
it is adopted as a voltage multiplier. Otherwise, the extracted
voltage is enhanced by a separate DC-DC voltage multiplier.
For protection purposes, the generated voltage is limited by
a voltage limiter. Finally the converted power charges the
energy storage (usually a capacitor) which acts as a buffer
in the system. The application and the structure of the load
system determines whether the load can be directly supplied
by the energy storage [27] or requires an additional voltage
regulator [28] to reduce the output ripple.

As mentioned, threshold voltage or voltage drop of the
switching devices (MOS transistor or diode) is the main
setback for PCE degradation of the rectifier [5]. The PCE of a
rectifier is the ratio of the delivered power at the load system
to the received power at rectifier input [23].

A rectifier with lower threshold voltage MOS transistors or
lower voltage drop diodes operates with lower received power
levels and provides a larger output voltage level [21]. Reducing
the threshold voltage statically in forward-bias results in an
increase of the leakage current in reverse-bias. A DDCC
rectifier [18] is able to cancel the threshold voltage by an active
gate bias mechanism leading to reduction of the threshold
voltage and leakage current in forward and reverse bias respec-
tively. However, reducing the threshold voltage and leakage
current is not always suitable for RFEH systems especially
when the harvester is too close to the transmitter or RF source.
Under this condition, the output voltage is expected to be
limited to protect the succeeding circuitry from being driven
with overpower.

A. Body Effect in the DDCC Rectifier

Body-source potential (Vsb) is directly related to the thresh-
old voltage of a MOS transistor and often used to manipulate
the threshold voltage through a method referred as dynamic
voltage-threshold scaling (DVTS) technique [29]. in reference
to the classic theory, the leakage current in the reverse bias
mode can be determined as [30]:

Ileakage = I0.
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Fig. 2. Simulated threshold voltage and body current variation as a function
of Vsb for PMOS transistor.

where I0 is a process-dependent parameter, VT is the thermal
voltage and W/L is the aspect ratio of the transistors. The
channel-length modulation effect is negligible for the operation
frequency lower than C-band and further strengthen by the
fabrication process in a standard 130 nm CMOS. For higher
frequency bands operation and sub-micron CMOS technology,
this effect becomes more conspicuous and should be taken into
account.

Moreover, threshold voltage of a n-type or p-type MOS
transistor in forward bias is expressed as [30]:

VthN = Vth0N + γ
(√|2�F + Vsb| − √|2�F |

)
(2)

Vth P = Vth0P − γ
(√|2�F − Vsb| − √|2�F |

)
(3)

where Vth0N and Vth0P are the threshold voltages when Vsb is
zero. γ is the body effect coefficient and 2�F is the surface
potential coefficient. In reference to (2) and (3), threshold
voltage can be only be dictated by Vsb since other parameters
are much dependent upon the material properties of the CMOS
process which are not easily adjustable unless the design is
implemented in a customized process which bottlenecks in
the fabrication cost.

In addition, a trade-off between threshold voltage and
leakage current usually exists which limits the degree of
freedom for threshold voltage reduction [see (1)]. Thanks
to the inherent attributes of the DDCC rectifier, the leakage
current is considerably restrained. Hence, it is feasible to
reduce the threshold voltage to some extent by regulating Vsb

without any major increase in the leakage current especially
for PMOS transistors where the N-wells are isolated which
allows the body to be freely biased. However, excessive
threshold voltage reduction translates into PCE degradation
which will be explained in Section IV. Also to be noted that,
NMOS transistors are required to be implemented in a triple-
well, also known as deep N-well (DNW), structure to allow
the body to be independently biased.

Fig. 2 depicts the simulation result of Vth as a function of
Vsb for a PMOS transistor while the drain-to-source voltage is

Fig. 3. Conventional source-to-body (SB) biasing structures for differential-
drive cross-coupled (DDCC) rectifier. (a) Positive. (b) Negative rectifier.

Fig. 4. A typical double-rail multi-stage DDCC rectifier configuration with
3 stages.

set to −3.0 V and the width of transistor is set to 20 μm with
130 nm of length. The Vth curve shows gradual drop as Vsb

increases till the PN junction between the source and the body
turns “on” (Vsb > 0.7 V). Further increase does not affect Vth .
Therefore, the body biasing of rectifier’s PMOS transistors can
be regulated in order to decrease the Vth .

Fig. 3 illustrates circuit configuration of a DDCC rectifier.
A symmetric rectifier as a dc power supply for wireless
sensors increases the rectification efficiency and alleviates the
non-linearity of input resistance while making the interface
more efficient to the antenna. It also provides a condition
for the succeeding analog circuits to be more flexible and
efficient [31]. In Fig. 3, a two-cell rectifier is considered in
which Fig. 3(a) (N1, N2, P1 and P2) and Fig. 3(b) (N3, N4,
P3 and P4) are the positive and negative rectifiers respectively,
which generate a symmetric dc voltage [32].

In a multi-stage DDCC rectifier, cells are stacked in series
through the extracted dc path and connected in parallel via
coupling capacitors (CC ) to the input terminals which feed the
rectifier with RF signals (it is usually emulated by a sinusoidal
voltage source). The number of stage is usually determined by
the required output voltage and dependent on the harvester
application. Fig. 4 depicts a double-rail three-stage DDCC
rectifier driving a load (RL). Smoothing capacitor (CS) is
usually connected in parallel with the load to mitigate the
ripple at the output.

Conventionally, Vsb is set to 0 by connecting source to body
to reduce the body effect as depicted in Fig. 3. This configura-
tion drives the transistors to operate with a fixed Vth and keeps
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Fig. 5. Generated dc voltage in each cell versus input power in a rectifier
using SB biasing technique at 953 MHz driving a 100 k�.

the leakage current relatively low. However, by examining the
operation mechanism of the DDCC rectifier [18], a degree
of freedom exists to reduce Vth by biasing transistors’ body
without any considerable increase in the leakage current since
the gate of those transistors that are in the reverse bias are
negatively biased leading to a controlled leakage.

III. PROPOSED BODY-BIASING CONFIGURATION

As mentioned, transistors’ body can be configured to mod-
erately control Vth . The regulated Vth provides a condition
for the rectifier to operate with dynamic efficiency. As con-
cluded in Section II, Vsb should be configured with a positive
dc voltage for the PMOS transistors in the DDCC rectifier
to minimize the body effect especially for smaller received
power. In other words, Vb is required to be biased by a
lower dc voltage than Vs . In the DDCC rectifier structure,
this dc voltage can be provided from each cell output. Fig. 5
depicts each cell output (A, B, C, D, VD D and VSS of Fig. 4)
versus input power to drive a 100 k� load at 953 MHz
operating frequency when source-to-body (SB) biasing tech-
nique is adopted. The generated dc voltage level in each
cell varies by amount of input power as shown in Fig. 5.
Due to the symmetric capability of the rectifier, both negative
and positive dc voltages are provided. Therefore, the body of
PMOS transistors should be connected to DCin and DCout

for positive and negative rectifier rail respectively in order to
be biased with a positive dc voltage.

Fig. 6 illustrates the circuit configuration of proposed body
biasing scheme referred as lower dc feeding (LDCF) tech-
nique. In this configuration, the body of NMOS transistors are
tied to source whereas PMOS transistors’ body is connected
to DCin and DCout in the positive and negative rectifier rail
respectively. Therefore, NMOS transistors operate with non-
scalable Vth since the Vsb is 0 while PMOS transistors operate
with a scalable Vth since Vsb is no longer equal to zero.

Constructing a multi-stage rectifier based on Fig. 4 and
adopting LDCF body biasing scheme allows PMOS transis-
tors’ body to be fed by the generated dc voltages. In the
positive rectifier rail, the body of PMOS transistors are biased

Fig. 6. Circuit configuration of proposed lower dc feeding (LDCF) body
biasing technique for DDCC rectifier. (a) Positive. (b) Negative rectifier.

Fig. 7. Vsb of PMOS transistors as a function of input power driving
a 100 k� load.

by the dc output of (n − 1) while they are fed by the output
of (n + 1) for the negative rectifier rail where n represents the
cell number in the Fig. 4. Hence, the effective value of Vsb

is always positive since Vs > Vb for all cells. Here, Vsbpxn

can be defined where x denotes the PMOS number and n
corresponds to the cell number. Therefore, in the positive and
negative rectifier rail, body of two PMOS transistors in each
cell are identically biased and⎧⎪⎨

⎪⎩
Vsbp11 = Vsbp21 & Vsbp31 = Vsbp41

Vsbp12 = Vsbp22 & Vsbp32 = Vsbp42

Vsbp13 = Vsbp23 & Vsbp33 = Vsbp43

⎫⎪⎬
⎪⎭ (4)

Fig. 7 depicts Vsb of all PMOS transistors in a double-rail
three-stage rectifier using LDCF technique. The curves of Vsb

are relatively equal over the range of input power between
−35 and 5 dBm. It can be concluded that all bodies are
almost equally biased with the same potential and smaller
than the source. Vsb rises as input power increases leading
to reduced Vth .

In DDCC rectifier structure, the gate-to-source capaci-
tance (Cgs) of the transistors, which correlates with the aspect
ratio, increases when the operation frequency is raised and
causes the input parasitic capacitance Cin to become larger.
Consequently, the transistors operate in weak inversion region
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Fig. 8. Simulated input impedance |Zin| of the rectifiers as a function of
frequency under a 10 k� load at −6 dBm.

due to the reduction in the differential voltage and an increase
in input impedance caused by Cin , and resulting in PCE
degradation [33]. Since the scope of this work is confined
for the operating frequencies between 953 MHz and 2 GHz,
the size of transistors has been set through multiple iterations
in the simulation so that Cin moderately affects the PCE at
the operation frequency between 953 MHz and 2 GHz. Fig. 8
depicts the simulation results of the input impedance (|Zin|) of
both LDCF and SB rectifier as function of operating frequency
while driving a 10 k� load at −6 dBm of input power. |Zin|
of the rectifiers decreases with an increase of frequency till it
reaches to the minimum point (between 1.5 and 1.75 GHz).
The rectifiers encounter larger |Zin| with further increase in
frequency due to the increase in input reactance. Noted, the
|Zin| of the LDCF rectifier is relatively smaller than the SB
rectifier.

IV. MEASUREMENT RESULTS AND DISCUSSION

A. Circuit and PCB Design

Both LDCF and SB biasing techniques have been
implemented in two separate rectifiers with identical design
specifications. The rectifiers were designed in a double-rail
three-stage configuration with total transistor width of 25 μm
and 40 μm for NMOS and PMOS, respectively. The length of
130 nm was chosen for both transistor types. This aspect ratio
between NMOS and PMOS transistors approximates the
ON-resistances be almost identical. Metal-Insulator-
Metal (MIM) type was selected for coupling and smoothing
capacitors. 600 fF MIM coupling capacitors (CC ) were
deliberately implemented to exhibit a relatively less effect
on the conversion efficiency. A 3.2 pF MIM smoothing
capacitor (CS) was selected in order to mitigate the output
ripple. Table I lists the component’s value. The component’s
value were obtained after multiple iterations so that they do
not considerably degrade the PCE. The rectifiers have been
fabricated in 130 nm CMOS technology. The die photograph
of the fabricated chip is illustrated in Fig. 9(a) with a total
chip area consumption of 0.954 mm2 including the RF

TABLE I

COMPONENTS VALUES OF THE LDCF AND SB RECTIFIERS

pads. However, an active area of 0.029 mm2 was dedicated
to each rectifier. Due to the negligible substrate loss, no
de-embedding block is needed to be integrated to the chip.
The RF pad in the design kit offers ESD protection capability
which requires the pads to be biased by a dc voltage. All
the RF pads were biased with 3 V and ground except the
RF pads which are associated to VSSs (output of negative
rectifiers rail) signal were biased with −3 and 3 V to keep
the original signals untouched. A FR4 PCB was implemented
in order to realize a variable resistor to emulate the load
system RL and subsequently to evaluate the rectifiers under
different load conditions.

B. Measurement Setups and Procedures

An on-wafer measurement technique was used to evaluate
the rectifiers performance. Two differential probes were dedi-
cated for the input and output. E8267D PSG was used along
with a broadband balun in order to generate a differential
signal and eventually to drive the rectifiers. The balun was
characterized via E8364B PNA. The loss of the cables were
also considered and measured using E4440A PSA. The total
output dc voltage which is equal to VDC = VD D − VSS

was measured using a digital multimeter. Fig. 9(b) shows a
photo of the measurement setup. The rectifiers’ PCE can be
calculated as

PC E(%) = PDC

Prcv
× 100 (5)

where Prcv is the received power at the input of the rec-
tifiers and PDC is the power delivered to the load system.
For overall system optimization the antenna and the rectifier
require an impedance matching circuit between them, but
here we assume a perfect impedance matching. The perfor-
mance of the rectifiers was evaluated by Prcv which can be
calculated as:

Prcv = (
Pav − Pcloss

)
.
(
1− | Sdd11 |2 − | Scd11 |2 )

(6)

where
Pav = (

PS
)
.
(
1− | Sds21 |2 )

(7)

PS is the power generated by PSG, Sds21 represents the
insertion loss by the balun, Pav is the available power at
the balun’s output, Pcloss denotes the power losses through
the cables, while Sdd11 and Scd11 are the rectifier’s reflection
coefficients for differential-to-differential and differential-to-
common modes respectively. The reflection coefficients of the
rectifiers and the insertion loss of the balun were obtained
using transformation of the standard S-parameters matrix to
mixed-mode S-parameters matrix [34], [35]. The calculated
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TABLE II

TRANSFORMED MIXED-MODE SCATTERING PARAMETERS

Fig. 9. (a) Photomicrograph of the fabricated rectifiers using the SB and
LDCF body biasing techniques. (b) Photograph of probe station and the
measurement setup.

mixed-mode S-parameters of the balun and the rectifiers at
different frequencies are listed in Table II. DC power dissipa-
tion at the rectifier output (PDC) can be obtained through the
equation PDC = V 2

DC/RL .

Fig. 10. Measured performance of LDCF and SB rectifiers while they are
driving different load resistances. (a) VDC and (b) PCE as function of Prcv
at 953 MHz.

C. Rectifier Performance

The performance of the rectifiers using LDCF and SB body
biasing techniques are compared in Figs.10–13 under different
loads and a variation of frequencies.

At the frequency 953 MHz, which is one of the most
common operating frequencies for passive RFID systems and
other identification schemes, the LDCF outperforms the SB
biasing technique in lower received power region in terms of
the generated VDC . Fig.10(a) shows the VDC of each rectifier
as a function of Prcv under 3 different loads as 2 k�, 10 k�
and 50 k�. Both rectifiers behave almost similar in response to
the Prcv variations. VDC rises as the Prcv increases at different
slopes. Increasing the load resistance improves the VDC since
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Fig. 11. Simplified LDCF model in the protected region. (a) Positive
RF cycle. (b) Negative RF cycle.

a larger load draws less charge from the CS leading to the
storage of more dc voltage. For the rectifier adopting LDCF
biasing technique, VDC shows better performance compared
to the rectifier with the conventional (SB) biasing technique.
The operation of the LDCF rectifier can be categorized into
3 regions. For example, for 50 k� load resistance, when
the Prcv is between −9 and −1 dBm [Enhanced region in
Fig. 10(a)], the rectifier generates larger VDC and the curve
shifted to the lower Prcv compared to the SB rectifier. As the
Prcv increases and enters to the region between −1 dBm and
5 dBm [Intermediate region in Fig. 10(a)], both rectifiers’ VDC

are almost equal in terms of magnitude. Further increase in
Prcv , raises the VDC for the SB rectifier while the VDC of
the LDCF rectifier becomes saturated after 5 dBm [Protected
region in Fig. 10(a)] and the VDC does not exceed 3.5 V.
The VDC in the far-field RFEH systems hardly reaches up
to 5.0 V with a small load [4], [18], [23]. Such systems are
usually supplied with a dc voltage around 1.2 V up to 1.8 V.
A LDO voltage regulator is commonly used to stabilize the
dc voltage fed by the rectifier, regulating towards the circuitry
in the system. The level of 3.5 V is a sufficient dc voltage
headroom which allows the LDO to operate properly.

To be more precise, the rectifier using LDCF technique
improves the VDC for smaller Prcv since the Vth of PMOS
transistors in the structure has been mitigated by biasing the
Vsb with a positive dc voltage in the enhanced region. The Vsb

of PMOS transistors increase as Prcv increases which causes
the source-body PN junction starts to turn “on”, and leads to
source-body leakage current. In the intermediate region, the
source-body leakage neutralizes the Vth mitigation and the
LDCF rectifier performance becomes almost similar to the SB
rectifier. In the protected region, Vsb of the PMOS transistors
in the LDCF rectifier reaches to 0.7 V (see Fig. 7 for power
>5 dBm) which induces the PN junction between the source
and the body of the PMOS transistors completely turn “on”
and shorts the input and output DC in both positive and
negative rectifier cells with a voltage drop through the junction
(see connections of the source and the body of P1-4 in Fig. 6).
Hence, the voltage difference between the DCin and DCout

of each rectifier cell becomes almost equal to the voltage
drop of the junction. Since the structure is in a double-rail
three-stage configuration, each rail encounters 3 voltage drops
with respect to the ground for each RF cycle. The LDCF
rectifier in the protected region can be simplified with a model
depicted in Fig. 11 in which JPxn denotes the PN junction
between the source and the body of PMOS transistor x in

stage n. As a result, VDC in the protected region is almost
equal to 6 voltage drops which is theoretically expected to be
4.2 V. However, due to the undesirable parasitic effects, the
voltage is limited at a lower level at the output of the LDCF
rectifier. The turning “on” of PN junction is a gradual process
which starts in the intermediate region and is completed in the
protected region. From the behavior of the LDCF depicted in
Fig. 10(a), it can be concluded that the process of turning
“on” is completed when the VDC does not further increase
with increase in Prcv which is at 3.5 V. This behavior can be
accounted as an advantage since a voltage limiter is usually
required in a far-field RFEH system to protect the succeeding
circuitry when it is too close to the RF source. Fig. 10(b)
illustrates the PCE of both rectifiers as a function of received
power under 3 different load resistances at 953 MHz. The
PCE increases with Prcv until it reaches its peak and starts
to drop with further increase in Prcv . These fluctuations are
caused by the leakage current of the transistors. According to
the operation mechanism of the DDCC rectifier [18], for each
RF cycle two transistors are “on” and the other two transistors
are “off”. For example, in the positive RF cycle, P1 and N2
in the positive rectifier rail are “on”. The drain-gate voltage
of the “off” transistors, N1 and P2, increases with larger Prcv

and forces the “off” transistors to turn “on”. As a result, the
current flows in the reverse direction and dissipates the power
leading to less charge to be stored in the Cs . PCE increases for
lower Prcv region with an increase of load resistance while it
degrades considerably at higher Prcv region. The maximum
PCE significantly decreases with larger load as well. The
rectifiers under a larger load resistance generate a larger dc
voltage which again forces the two transistors (N1 and P2 for
the positive RF cycle and N2 and P1 for the negative RF cycle)
to turn “on” with higher Prcv which are supposed to be in
“off” state while at lower Prcv , less dc voltage is generated
and the leakage current is suppressed. On the other hand, a
smaller load resistance draws larger current at lower Prcv while
provides larger maximum PCE at higher Prcv region compared
to the larger load resistances.

As depicted in Fig. 10(b), the rectifier with LDCF biasing
technique operates with superior PCE at lower Prcv region
and inferior at higher Prcv region. In a typical rectifier, the
leakage current is mainly due to the source-to-drain leakage
of NMOS and PMOS transistors which are suppressed by
negatively biasing the gates in the reverse bias condition for the
DDCC structure. However, another leakage affects the DDCC
rectifier using LDCF technique which is associated with the
PN-junction between the source and the body of the PMOS
transistors. As Prcv increases, the Vth of PMOS transistors
decreases which also reduces the power loss and increases the
PCE, compared to the SB rectifier, since the Vth reduction
still does not cause the PN-junction to turn “on”. Further
increase in Prcv causes excessive reduction in the Vth so that
the PMOS transistors become highly vulnerable to the reverse
bias leakage, and the negative biasing of the gates will no
longer be effective to suppress the reverse leakage current.
In addition, the PN-junction between the source and the body
of PMOS transistors turns “on”, and causes the current to leak
even in the forward bias. Hence, the summation of leakage
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Fig. 12. Measured performance of LDCF and SB rectifiers while they are driving different load resistances. (a) VDC and (b) PCE as function of Prcv
at 2 GHz.

Fig. 13. Measured performance of LDCF and SB rectifiers at different operating frequencies while driving a 10 k� load resistance. (a) VDC and (b) PCE
as function of Prcv .

in the forward and reverse bias becomes noticeable and the
PCE considerably drops with steeper slope compared to the
SB rectifier. This also explains the reasoning that the rectifier
behaves like a voltage limiter. The LDCF biasing technique
improves the maximum PCE as well. Under 2 k�, 10 k� and
50 k� load resistances, the improvements are 3.0%, 9.5% and
7.7% respectively compared to the rectifier with SB biasing.
The maximum PCE at this operating frequency for the LDCF
rectifier are measured to be 69.5% at 5.26 dBm, 55.2% at
−0.73 dBm and 20.7% at −3.73 dBm while driving a 2 k�,
10 k� and 50 k� respectively.

The LDCF rectifier performance at 2 GHz operating fre-
quency is compared to the SB rectifier in Fig. 12. The oper-
ation of LDCF rectifier at this frequency differs as depicted
in Fig. 12(a). The output VDC of the rectifiers rises almost
equally as Prcv increases while the LDCF rectifier still keeps
its self-limiting characteristic and does not allow the VDC

to exceed 3.5 V. At lower Prcv , the SB rectifier operates
with better PCE to some extent [see Fig. 12(b)] but as Prcv

increases, the PCE of the LDCF rectifier becomes larger until
it reaches to the maximum peak. Subsequently, the response
rolls off with steeper slope leading to self-limiting at the output
for higher Prcv . The maximum PCE for the rectifier using
LDCF technique under 2 k�, 10 k� and 50 k� are 73.9%
at 4.34 dBm, 65.5% at −1.65 dBm and 25.9% at −5.65 dBm
respectively. Comparing the simulated and measured maxi-
mum PCE, the former is only higher by 17% at 953 MHz
with RL of 10 k�. Due to the structure of LDCF rectifier,
a voltage difference between the source and the body of
PMOS transistors always exist causing considerable parasitic
capacitance Csb which is suppressed in the SB rectifier as
the source and the body of the PMOS transistors are shorted.
The effect of Csb is negligible for lower frequencies but Csb

increases with an increase of frequency and causes the LDCF
technique to become less effective in improving the PCE. This
is the reason the LDCF rectifier is comparatively less effective
at 2 GHz. However, the LDCF still exhibits higher maximum
PCE compared to the SB rectifier.
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TABLE III

PERFORMANCE SUMMARY AND BENCHMARK WITH THE STATE-OF-THE-ART

The frequency response analysis for a DDCC rectifier when
the rectifier adopts the LDCF self-body biasing technique can
be done for a specified condition. The performance of the
rectifier strongly depends on the driving load and the operating
frequency. One way to deliver a relatively an acceptable analy-
sis is to select a specified load and analyze the rectifier in terms
of the frequency response. A 10 k� load was selected and the
performance of the rectifiers have been analyzed with respect
to the Prcv at three different frequencies and the measurement
results are depicted in Fig. 13. Increasing the frequency from
500 MHz to 2 GHz improves the performance of both LDCF
and SB rectifiers. For the LDCF rectifier the measured VDC

is slightly improved compared to the SB rectifier at smaller
Prcv region [see Fig. 13(a)]. Fig. 13(b) illustrates PCE of the
rectifiers. As a perfect matching condition is assumed for the
measurement, for the performance analysis it can be referred
to the input impedance of the rectifiers for selected frequencies
which is depicted in Fig. 8 in which both rectifiers exhibit a fall
and rise between 500 MHz and 3 GHz with a minimum point
at approximately 1.75 GHz for the selected power and load.
The input impedance is mainly under influence of the input
reactance which is predominated by the parasitic capacitances
of the transistors in both rectifiers. Maximum PCE is observed
at the frequency where the rectifiers input impedance is mini-
mum which explains why the increasing in the frequency from
500 MHz to 2 GHz improves the PCE in Fig. 13(b). However,
a PCE comparison indicates that the LDCF achieves the
maximum improvement of 9.5% at 953 MHz which was the
preferred frequency for the optimization of design parameters
in this work. In addition, the LDCF rectifier improves the PCE
by 3.1% and 4% at 500 MHz and 2 GHz respectively.

As a crucial measurement parameter, VDC of 15 different
samples of the fabricated LDCF rectifier has been measured
at two frequencies of 953 MHz and 2 GHz while driving a
10 k� load. The corresponding received power at 953 MHz
and 2.0 GHz were calculated as 3.26 dBm and 3.34 dBm
respectively. The results were fairly consistent as depicted in
the Fig. 14.

The performance summary of the rectifiers in this
work is listed in Table III and fairly compared with the

Fig. 14. Output DC voltage VDC measured with 15 different samples of the
fabricated LDCF rectifier.

state-of-the-art reported architecture [5], [23] and [36]. The
LDCF rectifier in this work outperforms other works in terms
of maximum efficiency while driving a heavy or smaller load
with an inherent limitation capability which non of the listed
work offers. The simulated PCE reported in [23] is larger than
measured PCE of the LDCF rectifier since in this work a
double-rail three-stage rectifier is adopted in order to generate
a symmetric dc voltage at the output. Hence, The LDCF
rectifier faces more PCE degradation compared to single-rail
single-stage architecture in [23]. However, the maximum VDC

of the LDCF rectifier is comparatively larger.

V. CONCLUSION

A novel self-body-biasing technique, known as LDCF,
was proposed and compared with the conventional body-
biasing technique for DDCC rectifier used in far-field RF
energy-harvesting systems. The technique enables the inte-
grated PMOS transistors in the rectifier to operate with a
scalable Vth leading to an improvement of the output VDC

and PCE at smaller received power. The technique also allows
VDC saturation and PCE reduction at larger received power
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which can be considered as a self-limitation capability to
protect the succeeding circuits in a wireless sensor from being
overpowered.
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