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A 2-pm InGaP/GaAs Class-J Power Amplifier for
Multi-Band LTE Achieving 35.8-dB Gain, 40.5%
to 55.8% PAE and 28-dBm Linear Output Power
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Pui-In Mak, Senior Member, IEEE, and Rui P. Martins, Fellow, IEEE

Abstract—This paper describes the first linear multistage class-J
power amplifier (PA) fabricated in a 2-pum InGaP/GaAs HBT
process for multi-band long-term evolution (LTE) applications.
It includes a three-stage topology composed by a pre-driver,
driver, and a class-J main stage, to optimize the output power
and power-added efficiency (PAE) over 1.7-2.05 GHz, thus en-
capsulating the LTE bands 1 to 4, 9 to 10, 33 to 37, and 39. This
is achieved through a novel analog pre-distorter linearizer, which
features two sub-circuits for AM—AM and AM-PM linearization.
The PA prototype meets the standard’s adjacent channel leakage
ratio (ACLR < —30 dBc) at a maximum linear output power
of 28 dBm. Tested at 2.05 GHz and for a 16-QAM scheme, the
maximum error vector magnitude is 3.38% at a 28-dBm output
power, which corresponds to a PAE of 40.5%—55.8% across bands.
The input return loss is < —15 dB and the maximum power gain
is 35.8 dB, while demonstrating an unconditional stable character-
istic from dc up to 5 GHz. The die area is 950 pzm X 900 zem. The
performance metrics compare favorably with the state-of-the-art.

Index Terms—Adjacent channel leakage ratio (ACLR), error
vector magnitude (EVM), gallium-arsenide (GaAs), long-term
evolution (LTE), power-added efficiency (PAE), power amplifier
(PA), quadrature amplitude modulation (QAM).

I. INTRODUCTION

HE LONG-TERM evolution (LTE) wireless systems rely
on spectrally efficient modulation techniques to meet the
demand of high data-rate transmission such as the quadrature
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amplitude modulation (QAM) and the orthogonal frequency
division multiplexing (OFDM) access. The OFDM results in
a nonconstant signal envelope with a high peak-to-average
power ratio (PAPR). This sets stringent specifications in terms
of linearity for the power amplifier (PA). Besides linearity, the
power-added efficiency (PAE) is another critical specification
that is essential in extending the handset’s battery life. In order
to transmit within the strict linearity specifications, PAs are
forced to operate in a less efficient back-off region. This as
well limits the wideband transmission capability of the PA,
thus leading to the integration of multiple narrowband PAs for
multiband operation. Yet numerous efforts have taken place
to improve the LTE transmission bandwidth by introducing
various efficiency enhancement techniques [1]-[5].

The Doherty technique has been explored to improve the
back-off efficiency of the PA. This is achieved by modulating
the load respective to the output power level [6]-[10]. The load
modulation is achieved by realizing a quarter-wavelength delay
at the input of the peaking amplifier, and at the output of the
carrier amplifier. However, the sensitivity of the delays to the
frequency, particularly the input delay of the peaking amplifier,
which defines its turn ON time, limits its efficiency in broad-
band operation [11]. Despite such a limit, a wideband efficiency
of >30% for LTE operation was proven by adding a phase
compensation network and additional offset line with a supply
voltage of 4.5 V [12].

In recent years, the envelope tracking (ET) methodology is
gaining more popularity in the LTE PA design. ET involves the
modulation of the supply voltage of the PA respective to its
power level, thus enhancing the efficiency at the back-off power
region [13]-[20]. This improvement is obtained as a result of re-
ducing the supply voltage to the PA at low output power [21].
In ET methodology, the efficiency of the dynamic power supply
does influence the overall PA performance. Thus, the supply
modulator tends to become a bottleneck for wideband signals
especially when the envelope signal has a wider bandwidth than
the RF signals [22]. Nevertheless, using a complex supply mod-
ulator, LTE multi-band operation is proven even for a 300-MHz
RF bandwidth with more than 30% PAE across bands [23].

In order to concurrently achieve wideband operation and
a high PAE, this paper proposes a class-J PA fully integrated
in a 2-pm InGaP/GaAs HBT process for multi-band LTE.
The conventional practices were to use the class-J topology
in GaN and LDMOS processes due to their advantage of
high supply voltage swing [24]-[28]. Yet, in this work by
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Fig. 1. ACLR and PAE plot for various biasing current for the single-stage
amplifier.

incorporating an optimum positive reactance component to
the load impedance of the GaAs HBT device followed by
an optimum output impedance network, class-J operation is
achieved. To ensure the class-J PA operates in the linear mode,
a novel analog pre-distorter (APD) linearizer is integrated at
its input. The APD consists of two sub-circuits, which are
responsible for amplitude-to-amplitude modulation (AM—-AM)
and amplitude-to-phase modulation (AM—-PM) linearization,
respectively, for improving the operating bandwidth without
penalizing the efficiency.

This paper is organized as follows. The design of the class-J
PA is presented in Section II, and the operation of the APD is
described in Section III. Section IV reports the measurement
results, followed by conclusions in Section V.

II. CLASS-J WIDEBAND PA DESIGN

A. Optimum Bias Point—Measurement Analysis

The impact of the third-order component can be analyzed
in the definition of the adjacent channel leakage ratio (ACLR)
[29]. This is verified via measurements, where the final-stage
amplifier is assessed by sweeping its biasing current to deter-
mine the optimum value for the best ACLR at the region close
to the class-B biasing point. The resultant plot is shown in Fig. 1,
where it is evident that the PA delivers the best ACLR at a qui-
escent current of 40 mA. The resulting PAE at the output power
of 28 dBm is 28% where the measurement has been done at 1.98
GHz. Thus, this quiescent current is desirably chosen to bias up
the final stage amplifier, which is later designed as the class-J
PA main stage.

B. Class-J Output Impedance Analysis

The class-J PA was invented by Cripps [30]. It is capable of
delivering the same efficiency and linearity as with the class-AB
PA abstaining from the need of band limiting transmission line
harmonic short [31]. Instead, it employs a reactance harmonic
termination technique to improve the efficiency. Fig. 2 depicts
the schematic of the HBT class-J PA. The transistor is biased in
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deep class-AB mode where the RF output current waveform is
half-wave rectified. Hence,

Q)

I — —Inax siné, 0<f<mr
7o, T<0< 2.

The fundamental current component flowing in the matching
network is given as

Ip = I sin(6 + ) )

where ¢ is the phase deviation of the matching network and I;
is the fundamental current. The current flowing into Css, of
Fig. 2 is

Ie =Icc —Ip — It 3)

where the dc output current, Ic = ILjnax /7. The output voltage
Vo is expressed as

T 27

_ 1 /mw+/hw
wCQfo
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iy
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Therefore, from the conduction angle of 0 < 8 < T,
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The negative sign indicates that the voltage and current are out-
of-phase to each other. From the conduction angle of 7 < 6
< 2x, It in (3) is 0. Hence,

27
1 I
— max o I . 0 de
Vo2 w02f0/< - 1 sin( +¢5)>

1
- (UOQfa

(Imax + 2Il cos ¢) (6)

Fourier analysis is conducted on the output voltage component
Vo1 and Voo, which are given as V; and V5 in (7) and (8),
shown at the bottom of the following page. From these equa-
tions, it can be observed that ¥} has a positive imaginary com-
ponent, whereas V5 has a negative imaginary component. Thus,
the output impedance of the designed amplifier has to present
a complex output impedance with a positive reactance compo-
nent instead of the conventional resistive output impedance. The
second condition imposes that the impedance presented to the
second harmonic of the device has to be purely capacitive.

C. Class-J Second Harmonic Impedance Analysis

The presence of reactive components in (7) and (8) shifts the
voltage waveform of the amplifier in the time domain, thus ini-
tiating the transition from deep class-AB to class-J operation.
Adding a capacitive component to the second harmonic shifts
the voltage waveform by 45°, as illustrated in Fig. 3(a). The



202 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 1, JANUARY 2016

2.0
Vb
C* i‘» (:‘fz 1.54
" +
Ry T Ie o
Input S
— C Vi R = 1.0
Match| o, HBT 2o 0 t S
<
= 05-
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Fig. 4. Gain and PAE plot across output power for Zout = 2 + j3.

and maximum output power prior operating as a class-J ampli-
fier. For class-J operation, the initial second-order harmonic re-
active termination capacitive value is given by

1

F T (12)

'y fo =
Since Zzf, = (37/8), Ropt, and Rope = 5 €2, at the highest
operating frequency of 2 GHz, ("24, is computed to be 13.5 pF.
By setting C' ¢, to 13.5 pF, the fundamental load impedance is
optimized to deliver the highest backed off PAE with saturated
output power (Psyt) of >32 dBm. The above calculated load
impedance is used as a base line for a load—pull simulation to
determine the optimum Z,q for class-J operation where Zj4,q
is varied from the initial value of 5 2. The amplifier’s quiescent
collector current is set to 40 mA. From the load—pull result, for
the optimum fundamental load impedance in terms of maximum
output power and PAE, Z,,; is observed to be 2 + j3. The re-
sultant plot is illustrated in Fig. 4. It can be observed that the
maximum output power is indeed >32 dBm from 1.7 GHz up
to 2 GHz, with a PAE >50% at 28 dBm of output power.

E. Output Matching Network Design

Fig. 5 illustrates the proposed output matching network to
transform the 50-€2 load impedance to the desired Z,; = 2+753.
The matching network can be divided into the following two
sections.

» Network I, which represents the T-network comprises Lo,
(3, and L3, where the 50-§2 load is transformed to an in-
termediate impedance of 25 €2.

* Network II, which represents the L-network, consists of
(' and L1, which transform 25 €2 to (2 + j3) 2.

In Network I, the values of L,, Cz, and L3 are determined
through the following equations [32]:

VN =1

Ly=R Y~ (13)
W,

. VN =1+,/(&) -1

- 14

’ woNRy (4
&) -1

Ls :Rzi(‘”) (15)

Wo
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Fig. 6. Impedance transformation plot.

where M = Ry/Ry > land N > M.

In this work, By = 25 €2 and Ry = 50 §). Therefore, M = 2
and NN is set to 2.2. For Network II, the value of ('3 and L1 are
obtained through the following equations derived as:

: V4
p, =31V (16)
W
/46
Cy =20 (17)
W,

where w, = 2nf, in which f, is the center frequency at
1.85 GHz. The impedance transformation plot is shown in
Fig. 6. The solid oval plot in the Smith chart represents the
corresponding @ of the network, which is 3. The respective sim-
ulation results are illustrated in Fig. 7. The corresponding output
impedance, which consists of the fundamental and second
harmonics at the operating frequency from 1.7 to 2 GHz, is
illustrated in Fig. 8. The voltage and current waveforms at the
saturated output power {Ps,) and backed-off output power
(Pyo) of 28 dBm are illustrated in Fig. 9(a) and (b) for 1.7
and 2 GHz, respectively. Referring to these waveforms, it is
evident that the designed class-J main stage is able to operate
over a wide range of frequencies. The peak voltage achieved is
> 2V, at an output power >28 dBm.

III. LINEARIZATION OF CLASS-J PA—SINGLE CHIP SOLUTION

Fig. 10 illustrates the complete schematic of the PA, where an
APD linearizer is integrated at the input of the class-J amplifier.
To increase the overall power gain of the PA, a pre-driver ampli-
fier is added at the APD’s input. Conventional APDs work only
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Fig. 7. Simulated output power and PAE of the final stage class-J amplifier
with integrated output matching network.
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Fig. 8. Class-J output impedance and second-order harmonic plot across output
power from 1.7 to 2 GHz. Second-order harmonic termination is purely reactive
across the frequencies.

in narrowband operation [33], and in order to extend the oper-
ating LTE bandwidth, here the APD is divided in two sub-cir-
cuits, which are the phase and the amplitude pre-distorters.

In the HBT, spectral regrowth is mainly originated by its
base—collector parasitic capacitance, C,. [34]. To mitigate this
effect, a novel phase cancellation method is proposed by inte-
grating a base collector diode at the input of the driver amplifier.
The reverse bias capacitance Cl,.—, and forward bias capaci-
tance Cl,—qp, are expressed as follows [35]:

_ Cheo
Che—rb = —[1 N (‘;f—f)} i (18)
Che gy = ——P0 (19)

S .
_( Yen
()]
where Cl,.o is the collector—base capacitance when Vep = 0,
¢y 1s the collector—base junction built-in voltage, and n,. is the
grading coefficient of the collector—base junction. In order to

generate an opposite output phase response, the collector—base
junction is forward biased as represented by (19).
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Fig. 9. Class-J voltage and current waveform at P.,; and P, of 28 dBm for:
(a) 1.7 and (b) 2 GHz.

Based on (18) and (19), the positive and negative phase in-
sight in effect to Vup cancels off the C,—,, with single forward
biased base—collector diode integration, Cy,.—g, . However, with
the aid of two base—collector diodes (Cye—g, > Che—rb ), an op-
posite phase response (AM—-PM) is observed at the output of
the APD. The simulated AM—PM responses at the output of the
APD and class-J main amplifier are illustrated in Fig. 11. It can
be observed that the driver’s phase expansion and main ampli-
fier’s phase compression cancel out each other, thus contributing
to the improvement of the third-order intermodulation distortion
(IMD3) performance.

Generation of an opposite AM—PM response is achieved via
the T section intermediate matching network that consists of
Cs, Ly, C7, and Ls. The Smith plot of Fig. 12 illustrates the
location of the driver’s output impedance denoted at point A.
This impedance is potentially matched to X, B, or B.gy,. Point
B describes the input impedance of the main amplifier. Point
X is the output impedance of the APD where else B.qy is the
conjugate of B. Based on the profile plot of Fig. 13, matching
towards point X observes a favorable gain compression, which
compensates the gain expansion of the main amplifier. Matching
towards point B observes a gain expansion that begins from
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Fig. 11. Simulated AM—PM responses of the APD and main amplifier across
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the lower output power, which would not result into a desir-
able IMD3 cancellation. Point B, observes a flat profile until
the 1-dB compression point, which results into a similar ef-
fect as with point B matching. Fig. 14 illustrates the IMD3
and PAE load—pull contours before and after linearization. Y
is the output impedance of the main amplifier. These contours
are plotted at an output power of 28 dBm. With the optimum
biasing of 40 mA, Y is located close to the optimum IMD3
point at 2 GHz. Nevertheless, it is still located almost 8 dB
away from the optimum IMD3 point at 1.7 GHz, as described
in Fig. 14(a) and (b), respectively. The effect of AM—AM and
AM-PM cancellation between the APD and main amplifier in
the PA is illustrated in Fig. 14(c) and (d). The IMD3 optimum
impedance moves to the location Y for 1.7 and 2 GHz, while
the PAE degrades slightly due to the current consumption of the
APD.

1.0

Fig. 12. Location of the impedance point of driver (A), main amplifier (B),
and APD (X) at 1.7 GHz.
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Fig. 13. Gain compression at various matching point.
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(a) (b) © (d)

Fig. 14. IMD3 and PAE contour of the PA at: (a) 1.7 GHz prior linearization, (b) 2.1 GHz prior linearization, (c) 1.7 GHz after linearization, and (d) 2.1 GHz after
linearization. The PAE contour is plotted in 1% step, whereas the IMD3 contour is plotted in a 2-dB step.
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IV. EXPERIMENTAL RESULTS

Fig. 15 illustrates the chip photograph of the PA fabricated
in a 2-pm InGaP/GaAs HBT process, measuring 950 pm X
900 pm. The class-J PA is integrated into a single chip solu-
tion, along with the driver and pre-driver amplifiers. The simu-
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Fig. 16. Simulated and measured S-parameters of the PA with supply head- gain >35 dB, a§ showp in Fig. 17 where the K -factor >1 from
room of 3.3 V. dc to 5 GHz. Fig. 18 illustrates the power gain plot across the
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Fig. 21. EVM plot of the PA. The input signal is LTE 20-MHz 16-QAM.

output power for the three frequencies, which covers the LTE
bands 1 to 4, 10, 33 to 37, and 39, in which it can be observed
that the maximum output power of the PA is 32 dBm across
the entire frequency range. For LTE operation, the designed
PA is characterized with a 16-QAM modulated signal, which
has a 20-MHz channel bandwidth. The PAPR of the signal is
7.88 dB (at 0.001%), and the resulting ACLR and PAE plots
are shown in Fig. 19. With a supply voltage of 3.3 V, the PA
is capable of delivering a PAE of >40% from 1.7 to 2.05 GHz
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Fig. 22. Constellation diagram illustrating the OFDM measurement of the pro-
posed LTE PA.

TABLE I

PERFORMANCE SUMMARY OF THE IMPLEMENTED PA
Parameters Results
Technology 2-uym InGaP/GaAs HBT
Die Size 950 pm x 900 ym
Supply Voltage 33V
Frequency 1.7110 2.05 GHz
Mode LTE

1,2,3,4,9,10, 33,
LTE Band 34, 35,36, 37, 39
Channel Bandwidth (BW) | 20 MHz
Max. Linear Output Power | 28 dBm

1.74% to 3.38%
EVM (16-QAM) at 28 dBm Output Power
PAE 40.5% to 55.8%
Gain 34.6t0 35.8dB
S11 <-15dB
S22 <-10dB
Stability Unconditionally Stable

at an output power of 28 dBm, with a maximum corresponding
ACLR reading out to be —30 dBc, satisfying the requirement for
the ACLR as stated in 3GPP specifications (3GPP TS 36.101),
release 10.5 (2012).

Fig. 20 illustrates the ACLR spectrum at an output power of
28 dBm. The PA meets the regulated spectral mask and an error
vector magnitude (EVM) <4% is achieved across the operating
bands, as depicted in Fig. 21. The corresponding constellation
diagram is given in Fig. 22. Finally, Tables I and II summa-
rize the proposed PA’s measured performances and performance
benchmark with other recently reported designs, respectively.

V. CONCLUSIONS

A novel wideband high-efficiency LTE PA has been pre-
sented. The stringent linearity specifications are met via
insightful analysis and the use of a novel APD linearizer. The
class-J PA core provides a wideband efficiency from 1.7 to
2.05 GHz at a low backed-off output power. At an output
power of 28 dBm, the PA delivers a high PAE of 56%, while
complying with the ACLR and EVM specifications for a
20-MHz channel bandwidth. The small die area (< 1 mm?)
also benefits the cost of production. The result highlights the



208

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 1, JANUARY 2016

TABLE 11
PERFORMANCE COMPARISON OF THE PUBLISHED LTE PAs

Performance Operating LTE Channel Supply Gain Maximum Linear PAE Chip Size
Parameter Frequency (GHz) BW (MHz) Voltage (V) (dB) Output Power (dBm) (%) (mm?)
[14] 25 10 33 24.8 258 316 26x1.7
[15] 25 20 6.0 29.0 30.0 45.0 1%x16
[18] 24 5 42 16.0 24.3 42.0 1.1x15
[36] 1.7-2 10 4 18.3 26.5 38.6 t0 35.1 1.95x 0.8
[37] 2.35 20 35 415 28.3 19 1%x26
[23] 1.7-2 10 34 26.8 28.0 33.3t1039 -
This Work 1.7-2.05 20 3.3 35.8 28.0 40.5 to 56 0.95x0.9

potential applications of the proposed PA in handset transmitter
systems, where it is capable of delivering a high linear output
power at low supply voltage, when compared with the reported
works in Table II, thus prolonging the battery’s life.
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