An Analog-Proportional Digital-Integral Multiloop Digital LDO With PSR Improvement and LCO Reduction

Mo Huang^(D), Senior Member, IEEE, Yan Lu^(D), Senior Member, IEEE, and Rui P. Martins^(D), Fellow, IEEE

I. INTRODUCTION

Abstract-This article presents a low-dropout regulator (LDO), with analog-proportional (AP) and digital integral (DI) controls. The design concerns are discussed at first, on how to improve the load transient response, enhance the power supply rejection (PSR), and reduce the limit cycle oscillation (LCO). For a good output dc accuracy, the DI section is implemented with shift-register-based coarse- and fine-tuning loops. Meanwhile, the AP section, based on a low-supply flipped-voltage follower (FVF), can respond fast to the load step and input supply ripple. A replica loop is used to define the steady-state output current of AP, allowing a sufficient dynamic swing against the supply ripple. To lower the load current range with no LCO, the AP section will output all the current at very light load. An error amplifier (EA) with moderate gain is added to improve the light-load output accuracy. This EA also improves the PSR by approximately 6 dB. Fabricated in a 65-nm CMOS process, a 65-mV undershoot is measured with a 0-10-mA load current step under 0.6-V supply voltage and 50-mV dropout. Due to the fast AP, a 5-MHz operation clock is applied to the digital section, reducing the overall quiescent current to 29 μ A. A 0.37-ps figure of merit (FoM) is then achieved. A -22-dB PSR at 1 MHz is measured at 0.6-V supply, 100-mV dropout, and 10-mA load current.

Index Terms—Digital, fast response, low dropout regulator (LDO), power supply rejection (PSR), proportional-integral (PI) control.

Manuscript received October 4, 2019; revised December 10, 2019; accepted January 7, 2020. Date of publication February 3, 2020; date of current version May 27, 2020. This article was approved by Associate Editor Piero Malcovati. This work was supported in part by the Natural Science Foundation of China under Grant 61974046, in part by the Provincial Key Research and Development Program of Guangdong under Grant 2019B010140002, in part by the International Science and Technology Cooperation Program of Guangzhou under Grant 201807010065, in part by the Science and Technology Program of Guangzhou under Grant 201802010053, and in part by the Research Committee of University of Macau under Grant MYRG2017-00037-AMSV. (*Corresponding author: Yan Lu.*)

Mo Huang is with the State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao 999078, China, and also with the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macao 999078, China. He was with the School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China (e-mail: moorehuang@outlook.com).

Yan Lu is with the State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao 999078, China, and also with the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macao 999078, China (e-mail: yanlu@umac.mo).

Rui P. Martins is with the State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao 999078, China, and also with the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macao 999078, China, on leave from the Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2020.2967540

RESOURCES are used in a dynamic way in power-efficient digital integrated circuits (ICs) nowadays. To fulfill the dynamics, multiple integrated voltage regulators (IVRs) are used to supply the fine-grained voltage domains independently [1], [2], as a granular power management [3]. Each IVR typically combines a switchedcapacitor power converter and a low-dropout regulator (LDO), where the LDO should work with a small dropout (typically <100 mV) for high efficiency. Hence, conventional analog LDOs (ALDO) [4]–[6] are not suitable for these applications, because the power transistor needs to work in saturation region with a relatively high dropout voltage ($V_{dropout}$). Instead, digital LDOs (DLDO) [7]-[28] are attractive since the digitized power transistors (controlled by a digital word n) can work like switches with a low V_{dropout}. This switch-like feature also helps to conduct more load current under the same power transistor size. Meanwhile, the control of DLDO works with a low voltage and enjoys the benefits of process scalability, which is inherently compatible to digital ICs.

One of the major design challenges of a conventional DLDO is the power-speed tradeoff. To prevent a large spike on the output voltage (V_{OUT}), the DLDO should find the correct n within a very short time. This typically requires the controller to work with a high operation frequency (f_{CLK}) and, thus, a high power consumption. Several previous works have been proposed to mitigate this tradeoff by sizing unequal power transistors [3], [8]–[12] or asynchronous control [13]–[16]. For instance, large grain power transistors are activated for a fast transient response (coarse-tuning), while small ones are used to ensure steady-state accuracy (fine-tuning) [3], [8]–[10]. Also, recovery time can be further reduced by changing the control word in a binary [11] or an exponential [12] way. Asynchronous control [13]–[16] tries to save power by removing the global clock signal and driving the control logics from their previous stage. Nevertheless, without a power-hungry quantizer, these schemes may still have difficulty in dealing with a sharp I_{LOAD} change [17].

Proportional-integral (PI) control [18]–[24] can also be a good candidate for the power-speed tradeoff, as conceptually explained in Fig. 1. The conventional shift-register (SR) based DLDO [7] is essentially an I-only control, offering a high dc gain/accuracy but slow response. Inversely, the P-only control responds fast but fails to reduce the steady-state error. Hence, it is straightforward to combine these two controls, for simultaneously fast response and high

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 1. Conceptual transient waveforms of V_{OUT}, under I-only, P-only, and PI controls.

dc accuracy. In [20] and [23], the analog loop is used for I-control, while the digital part compensates the large transient current step. However, regarding the low V_{IN} and low $V_{dropout}$ scenarios, the implementation of the I-/P-controls is still worth investigating.

Furthermore, for digital IC applications, a moderate power supply rejection (PSR) is typically required to resist the MHz-level input noise, mainly from the prestage switching converter. A good PSR can be achieved by ALDOs [4]–[6], but it will be degraded when the loop gain of ALDO is reduced under low V_{IN} and $V_{dropout}$. For DLDO, the PSR is inherently worse due to the discontinuous operation, which will be explained in Section II.

Finally, the minimum load current $(I_{\text{LOAD,min}})$ of the DLDO may be constrained if only a small on-chip output capacitor (C_{OUT}) is used. A large steady-state limit cycle oscillation (LCO) will be excited at light load. Tsou *et al.* [25] uses a tracking bound method to reduce the LCO under process, voltage, temperature (PVT) variations. Huang *et al.* [26] uses a feed-forward path to reduce the LCO to mode-1, i.e., one least significant bit (LSB) power transistor turns on and off at steady state. However, even this mode-1 LCO may not be acceptable at a very light-load condition. Designing a smaller LSB current (I_{LSB}) can reduce the LCO, but it trades with an increased complexity to cover a wide I_{LOAD} range.

To address the aforementioned issues, we propose an analog-proportional, digital-integral (AP-DI) LDO in this article, as an extension of [27]. We aim at an improved PSR, a reduced LCO, an $I_{\text{LOAD,min}}$ extension to 0, and a fast transient response. These are achieved under a low V_{IN} and V_{dropout} and a small quiescent current I_Q . This article is organized as follows. Section II describes the design considerations of the AP-DI LDO. Section III presents the working principle and circuit implementations. Section IV shows the measurement results, and finally, Section V draws the conclusions.

II. DESIGN CONSIDERATIONS ON THE AP-DI LDO

For DLDO, it is convenient to design I-control in a digital way, i.e., conventionally using an SR [7], which is essentially an integrator providing a dc pole and, thus, a high dc gain and good steady-state accuracy. However, how to design P-control is worth further investigation. This section discusses the design considerations from the aspects of load transient response, PSR, and LCO.

A. Load Transient Response

For an LDO with the P-control, the undershoot voltage ΔV_{OUT} can be approximately presented by

$$\Delta V_{\rm OUT} = \max\left\{\frac{\Delta I_{\rm LOAD} \cdot \tau_{\rm DELAY}}{C_{\rm OUT}}, \frac{\Delta I_{\rm LOAD}}{A_P \cdot g_{\rm mP}}\right\}$$
(1)

where ΔI_{LOAD} is the load current step, τ_{DELAY} is the P-control response delay to the ΔV_{OUT} , g_{mP} is the transconductance of the output power transistor, and A_P is gain of P-control. The $\Delta I_{\text{LOAD}} \cdot \tau_{\text{DELAY}}/C_{\text{OUT}}$ term is the voltage droop caused by the delay, while the $\Delta I_{\text{LOAD}}/(A_P \cdot g_{\text{mP}})$ term represents the V_{OUT} droop for P-control to compensate ΔI_{LOAD} .

Fig. 2 shows the multiple models of the P-control, and the possible response to the load step. In Fig. 2(a), the P-control is implemented in a digital way (DI-DP control). The DP control can be beneficial to obtain a large P-gain (A_{P1}), minimizing the $\Delta I_{LOAD}/(A_P \cdot g_{mP})$ term in (1). However, the discontinuous sampling of the digital P-control stage, represented by z^{-1} , will cause a delay time τ_{D1} in response. Then a significant ΔV_{OUT} will still take place for a sharp I_{LOAD} step, since a large quantity of instant charge (shaded area) is needed from the output capacitor within the delay interval. To shorten the delay, a power-consuming sensor is often utilized [18].

The P-control can also be achieved in an analog way (AP control). Huang et al. [19] proposed an "analogassisted"-AP [see Fig. 2(b)], feeding the ΔV_{OUT} back through a first-order RC high-pass filter (HPF) almost without delay and I_O overhead. This minimizes the $\Delta I_{\text{LOAD}} \cdot \tau_{\text{DELAY}}/C_{\text{OUT}}$ term. However, the passive HPF only contributes a P-gain (A_{P2}) smaller than 1, hence a relatively large undershoot still occurs. In addition, this scheme is effective only with a certain number of power transistors turned on, limiting the ILOAD, min. The turned-off power transistors are designed to make contribution in [20], by using the n-type power transistor. Nevertheless, to turn on the NMOS, the gate-drive voltage is required higher than the VIN. Still, large undershoot takes place because of the insufficient P-gain. Wang and Mercier [24] feed the ΔV_{OUT} back using a capacitor between gate-drain of the power transistor, fulfilling a larger p-gain.

Now the proposed realization of PI control is given in Fig. 2(c), where AP is implemented with active circuits. Consequently, a moderate P-gain (A_{P3}) and small delay (τ_{D2}) can be achieved. Now both terms in (1) are smaller than that of DI-DP or "analog-assisted" DI-AP cases making the overall ΔV_{OUT} smaller. It should be noticed that under a low V_{IN} and $V_{dropout}$ in digital ICs, the AP with moderate P-gain and small delay should be achievable, such as using a flipped-voltage follower (FVF) topology to be discussed afterward.

B. PSR

For a conventional DLDO, the PSR is typically not as good as its analog counterpart, which is explained in Fig. 3.

First, significant glitch will be excited by the discontinuous sampling and *n* changing. Assume control word *n* is synchronized at the rising edge of the operation clock (CLK). We define the optimum $n(n_{opt})$ that makes $V_{OUT} = V_{REF}$ at the steady state. Also, we assume the controller manages to find out the n_{opt} at each synchronization (t_0 , t_1 , t_2 , t_3), which

Fig. 2. Models and transient waveforms of the LDO with (a) DI-DP, (b) DI-"analog-assisted" AP, and (c) proposed DI-AP control.

Fig. 3. Waveforms of V_{OUT} with a V_{IN} ripple for (a) digital-only and (b) analog-digital combined implementations. For digital-only control, the controller may ideally find out the optimum n and cannot find out the optimum n in time. PSR can be improved by a faster CLK.

is the most ideal case, if not impossible. Then, V_{OUT} is pulled back to V_{REF} at every CLK rising edge. However, even in this ideal case, the V_{OUT} ripple is partially reduced, because *n* is not adjustable during the sampling intervals, e.g., from t_0 to t_1 . Hence, during the intervals, the PSR can be written as a resistive divider

$$PSR = \frac{1}{\frac{R_{\text{LOAD}}}{r_{\text{ds},D}} + 1}$$
(2)

where R_{LOAD} is the load resistance, and $r_{\text{ds},D}$ is the instant resistance of the power transistor array. This makes LDO still vulnerable to V_{IN} noise.

Second, the nonoptimum n further increases the amplitude of the V_{OUT} ripple. Assume the control word n is the same for both optimum and nonoptimum cases at the starting point t_0 . If $n_1 \neq n_{\text{opt1}}$ at t_1 , an error of $V_e = V_{\text{OUT}} - V_{\text{REF}}$ exists (typically $n_1 < n_{\text{opt1}}$ and $V_e > 0$). Then, from t_1 to t_2 , V_{OUT} starts to increase from V_e , making the V_{OUT} ripple larger.

Third, it is true that the V_{OUT} glitch can be reduced by minimizing the sampling interval (a much faster CLK), but this contradicts the power-efficient prerequisite.

Based on the analysis, the PSR of DLDO may only be improved by continuous quantization and *n* changing, which should incorporate an analog circuit. Fortunately, the aforementioned analog P-control offers the benefit to continuously change the output current, as shown in Fig. 3(b), by parallelizing an analog resistance $r_{ds,A}$ to $r_{ds,D}$. For one thing, the instant $r_{ds,A}$ can be continuously changed. For another thing, feedback loops can take effort to adjust $r_{ds,A}$ according to V_{IN} noise, which will be discussed afterward. Consequently,

Fig. 4. Waveforms of LCO with digital-only and analog-digital combined controls, at the very light load and heavy load, respectively.

the capability of resisting a high-frequency V_{IN} noise is determined by the AP section, and the sampling interval (t_4 to t_5) can be longer to save I_Q .

C. LCO and ILOAD, min

The principle of LCO was explicitly analyzed in [26]. Conceptually, it is caused by quantization errors as in Fig. 4 (assume only mode-1 LCO exists). For a very light-load case where $I_{\text{LOAD}} < I_{\text{LSB}}$, if *n* changes from "0" to "1," the digitized output current I_D of the conventional DI-only LDO will change from 0 to I_{LSB} . Then, the amplitude of steady-state V_{OUT} ripple can be $I_{\text{LSB}} \times R_{\text{LOAD}}$, if only a small C_{OUT} is employed. The smaller the I_{LOAD} , the larger the R_{LOAD} and the steady-state LCO will be.

The large LCO at light load can also be mitigated with an AP-DI control (A + D). When the I_{LOAD} is small or even close to 0, if the AP section can take up the load current, the relatively low analog gain (typical for a low V_{IN} and $V_{dropout}$) will force $V_{OUT} > V_{REF}$. This eliminates V_{OUT} crossing V_{REF} , hence the DI section is deactivated and no LCO exists. However, the high dc gain feature from the DI section can no longer be enjoyed. Therefore, to avoid V_{OUT} deviating too much from V_{REF} , it still requires a moderate analog loop gain for a soft regulation.

At heavy load and still assume mode-1 LCO exists, where n changes from n_1 to $n_1 + 1$. The LCO will be smaller than that of light load due to a smaller R_{LOAD} . However, the AP section offers another benefit to further reduce the LCO. The fast-response analog current I_A provided by the AP section always compensates I_D , reducing the overall output current I_{OUT} ripple. Here, the degraded light-load output accuracy is no longer an issue, because the output regulation task can be taken by the digital integrator automatically.

The steady-state LCO can also be eliminated by preventing the digital logics from flipping in [23]. This can be achieved by setting a dead zone in the comparator. However, the V_{OUT} accuracy may be sacrificed since it is unregulated when within the dead zone. In [23], the analog part is used for the steadystate regulation. As a brief summary, AP-DI is beneficial to the transient response. Additionally, the AP section can be reused to improve the PSR. Finally, if I_{OUT} is generated by AP at very light load, the steady-state LCO can be removed and $I_{LOAD,min} = 0$ is allowed. Some loop gain is required for a soft regulation at light load. The heavy-load LCO can also be reduced by AP.

III. WORKING PRINCIPLES AND IMPLEMENTATIONS OF THE PROPOSED LDO

A. General Structure

The schematic of the proposed AP-DI LDO is shown in Fig. 5. In the AP part, an LDO based on an FVF is designed. The analog power transistor M_{PA} and the commongate (CG) amplifier M_2 compose the fastest loop (Loop-1), to deal with the fast transient. The FVF can be achievable with a low V_{IN} , since only $3 \times V_{DS}$ or $V_{GS} + V_{DS}$ voltage headroom is required. To reduce the V_{OUT} overshoot, C_1 and M_{10} are added. In the steady state, M_{10} is biased in subthreshold region to save I_Q . The high-frequency components of V_{OUT} will be coupled through C_1 , and M_{10} can absorb a large instantaneous current for overshoot reduction.

As discussed above, when the AP section takes over all the current at a very light load, another loop (Loop-2) should be added for regulation. Except for M_{PA} and M_2 , Loop-2 consists of a 2-stage error amplifier (EA), made from a differential input pair M_3 and M_4 , a load of current mirror M_7 and M_8 , and the common-source output stage M_9 . Loop-2 sets the gate voltage of M_2 based on the difference between V_{OUT} and V_{REF} . Capacitor C_B is added to the output of the EA, making this node the dominant pole of Loop-2. Under a low V_{IN} , the gain of Loop-2 might not be as high as that in a conventional ALDO, but it helps the light-load regulation and PSR, which is discussed in Section III-B.

For the DI part, it consists of three subsections (L, M, H), with 16-, 8-, and 8-bit SR-controlled power switch arrays, respectively. The power switches in these subsections are sized to achieve equivalent $16 \times 8 \times 8 = 1024$ current steps for a high dc accuracy, with carry/borrow operations between the adjacent subsections as in [19]. Hence, the overall control word *n* can be written as

$$n = l + 16 \cdot m + 128 \cdot h \tag{3}$$

where l, m, and h are the control word of the corresponding subsections. The coarse tuning (Loop-4) is made from M and H subsections, 64 steps in total, triggered by two comparators (CMP₂ and CMP₃) when V_{OUT} exceeds a preset boundary (V_{REF+} to V_{REF-}). In the coarse tuning, n is changed by 16 every cycle, allowing a fast recovery. Finally, a fine-tuning loop (Loop-5), made from the L subsection, is enabled when V_{OUT} is pulled back within the (V_{REF+} to V_{REF-}) boundary, and l changes according to the output of another comparator (CMP₁). The fine-tuning ensures a high dc gain.

We notice that the analog steady-state output current $I_{A,dc}$ is not defined by Loop-2 when the DI section is activated, as explained in Fig. 6(a). Since the DI section should have a larger dc gain than Loop-2, V_{OUT} is actually defined by the

Fig. 5. Full schematic of the proposed LDO.

Fig. 6. I_A generation (a) without Loop-3 and (b) with Loop-3.

DI section. Hence, the DI section can be modeled by a voltage source V_{OUTD} , whose difference from V_{REF} comes from the input offset of the comparator. Then the current of M_{PA} can be written as

$$I_{\text{PA}} = I_{A,\text{DC}} + I_{\text{bias}} \approx F_1 [A_1 \cdot (V_{\text{REF}} - V_{\text{OUTD}})]. \quad (4)$$

Here, I_{bias} is the bias current of the FVF, A_1 is the dc gain of EA, and F_1 is a function only related to the operating points of the analog circuits. As can be seen from (4), $I_{A,\text{dc}}$ is determined by V_{OUTD} and the operating points. Consequently, $I_{A,\text{dc}}$ may be small or even negative if $I_{\text{PA}} < I_b$. This will nullify the AP effort on transient response and PSR.

To prevent this, another loop (Loop-3) should be added to determine $I_{A,dc}$. Loop-3 employs a replica path $(M_{Pr} \text{ and } M_{2r})$, an EA, and a switched-resistor array to generate the replica current I_r . The EA uses a separate differential EA input pair (M_5 and M_6), while the rest are shared with Loop-2. The I_r can be adjusted by turning on/off the resistor array (R_2 , R_4 , R_6), controlled by $h\langle 2, 4, 6 \rangle$ from the DI H subsection, which adaptively increases $I_{A,dc}$ with I_{LOAD} . A fixed resistor R_0 is employed to ensure the AP section to take over the very light-load regulation. The M_{Pr} and M_{2r} are sized to be 1/300 of M_{PA} and M_2 . With Loop-3 as shown

Fig. 7. Simulated $I_{A,dc}$ when $V_{IN} = 0.6$ V and I_{LOAD} ranges from 0 to 10 mA. The value of h(2, 4, 6) is annotated.

in Fig. 6(b), $I_{A,dc}$ and I_r can be expressed as

$$\begin{bmatrix} I_{A,DC} \approx F_1 \left[\frac{A_1 \cdot (V_{REF} - V_{OUTD}) + A_2 \cdot (V_{REF} - V_r)}{2} \right] \\ I_r \approx F_2 \left[\frac{A_1 \cdot (V_{REF} - V_{OUTD}) + A_2 \cdot (V_{REF} - V_r)}{2} \right]$$
(5)

Fig. 8. Working principle of the proposed LDO at light-to-heavy and heavy-to-light load transitions.

where A_2 is the dc gains of EA in replica loop, and F_2 is the function defining I_r from the EA output. From (5), $I_{A,dc}$ can be roughly defined by I_r , if the main and replica loops match, i.e., $F_1 = F_2$.

The simulated $I_{A,dc}$ with I_{LOAD} ranging from 0 to 10 mA is given in Fig. 7. The respective $h\langle 2, 4, 6 \rangle$ is annotated. As can be seen, this method effectively prevents $I_A < 0$ and allows a large I_A swing to resist V_{IN} noise. The accuracy should be enhanced by sensing I_A and feeding the sensed information back to control I_r in future works. At light load, the simulated quiescent current of the AP section is 23.5 μ A and that of the DI section is 4.2 μ A.

B. Working Principles

The working principle of the proposed LDO is illustrated in Fig. 8. It begins with an I_{LOAD} step up at t_1 . The fast Loop-1 will respond to the load step, providing most of the momentary I_{OUT} and preventing a significant V_{OUT} undershoot (peaking out at t_2). The I_D will not increase until the next sampling at t_3 , where the coarse-tuning drives V_{OUT} back quickly, because of the $\times 16$ control word shifting. After the DI activation, I_A decreases with I_D increasing. When V_{OUT} reaches $V_{\text{REF}-}$ at t_4 , the coarse-tuning is changed to the finetuning. The $\times 1$ control word shifting regulates V_{OUT} to V_{REF} slowly but accurately. Carry-in operation will take place when l overflows. The I_r and $I_{A,dc}$ will also increase step by step, according to the current indictor h(2, 4, 6). The LDO reaches a steady state until I_A gets close to $I_{A,dc}$ at t_5 . The DI section will still excite a steady-state LCO, but as discussed, the LCO will be partially compensated by the fast-changing I_A .

When I_{LOAD} steps down at t_6 , a V_{OUT} overshoot occurs. The AP section can still respond to the step by providing a negative momentary I_A but mostly from M_{10} . Unlike the undershoot

Fig. 9. Simulated V_{OUT} load transient waveforms when I_{LOAD} changes between 0 and 10 mA. $V_{IN} = 0.6$ V, $V_{REF} = 0.55$ V, and $f_{CLK} = 5$ MHz.

case, I_D will also be reduced momentarily, because many DI power transistors are still turned on while their V_{DS} reduces. The coming sampling occurs at t_8 , the LDO is first controlled by Loop-4 if $V_{OUT} > V_{REF+}$ and then by Loop-5 since t_9 . Inverse to the operations between t_3 to t_5 , borrow operation occurs, and $I_{A,dc}$ will also decrease. As discussed, for the very light-load condition, I_{OUT} will be provided by I_A only. V_{OUT} is then forced larger than V_{REF} , disabling the DI section and removing the LCO.

Regarding the recovery time (t_2 to t_3 for undershoot and t_7 to t_9 for overshoot), the overshoot recovery should be longer. It is because I_{LOAD} is zero, M_{10} and the FVF bias current are the only two transistors that can provide pull-down currents for V_{OUT} , which limit the settling time for the heavy-to-light-load transient. The recovery time can be possibly reduced by

Fig. 10. Small-signal model of the proposed AP-DI LDO.

the asynchronous techniques, through maximizing the usage of the digital controller [15], [16], [23].

Here, the proposed AP-DI LDO is compared with the DI-only and AP-only LDOs. We define the DI-only LDO to be the conventional coarse-fine-tuning DLDO in [8], consisting of Loop-4 and -5. The AP-only LDO employs the FVF-based ALDO topology in [5], essentially made from Loop-1 and -2. The simulated V_{OUT} waveforms of load transient response are shown in Fig. 9, where $V_{IN} = 0.6$ V, $V_{REF} = 0.55$ V, $f_{CLK} = 5$ MHz, and I_{LOAD} changes between 0 and 10 mA within a 5-ns edge time. At light load, the large LCO in DI-only is removed. Also, the AP-DI undershoot is comparable with that of AP-only but much smaller than DI-only. This simulation verifies the effectiveness of the analysis.

C. Stability

The small-signal model of the AP section is shown in Fig. 10. The EA_1 and EA_2 , CG_1 and CG_2 , and Z_L and Z_r represent the EA stage, CG stage, and V_{OUT} and V_r impedance of the main loop and replica loop, respectively. g_{mA} , g_{mr} , and g_{mD} are the transconductances of M_{PA} , M_{Pr} , and power transistor array of the DI section. The A_0 /s term represents the effect of the digital integrator. The transfer functions (6)–(8) can be written as shown in Fig. 10, where A_3 and A_4 are the dc gains of CG stages of the main loop and replica loop, respectively. T_1 and T_2 and T_{11} and T_{22} are the output time constants at the EA second and first stages, respectively, while T_3 and T_4 are the CG output time constants. K_{33} and K_{44} are the resistances at V_{OUT} and V_r , respectively.

The frequency response of this multiple-loop LDO can be conceptually presented in Fig. 11. As discussed in [11], the DI section has two poles, one of which locating at dc cause the slow response (integrator). For the AP section, its bandwidth should be wider. Once AP and DI are connected in parallel, a zero locates near the intersection of the loop gain curves [29]. This zero cancels the dc pole from DI section, and therefore, the LDO stability depends on the AP section.

$$EA_{1}(s) = \frac{A_{1}}{(1+sT_{1})(1+sT_{11})}$$

$$EA_{2}(s) = \frac{A_{2}}{(1+sT_{2})(1+sT_{22})}$$
(6)

$$G_{1}(s) = \frac{A_{3}}{1 + sT_{3}}$$

$$G_{2}(s) = \frac{A_{4}}{1 + sT_{4}}$$
(7)

$$\begin{cases} Z_{L}(s) = \frac{r_{dsA} \parallel r_{dsD} \parallel R_{LOAD}}{1 + sT_{33}} = \frac{K_{33}}{1 + sT_{33}} \\ Z_{r}(s) = \frac{r_{dsr} \parallel R_{r}}{1 + sT_{44}} = \frac{K_{44}}{1 + sT_{44}} \end{cases}$$
(8)

Fig. 11. Conceptual frequency response of the AP-DI LDO.

To check the stability, the three analog loops are simulated first. Their breaking points are shown in Fig. 12. Loop-1 is broken at the EA output, and the ac stimulus is added to the gate of M_{PA} . Then, the open-loop transfer function can be written as

$$T_{\text{OL1}} = -g_{\text{mA}} \cdot Z_L(s) \cdot \text{CG}_1(s).$$
(9)

Hence, the dc gain of Loop-1 is related to the loading conditions.

For Loop-3 and -2, their transfer functions are expressed as

$$\begin{cases} T_{\text{OL2}} = \frac{\text{CG}_1(s) \cdot g_{\text{mA}} \cdot Z_L(s)}{1 + \text{CG}_1(s) \cdot g_{\text{mA}} \cdot Z_L(s)} \cdot \text{EA}_1(s) \\ T_{\text{OL3}} = \frac{\text{CG}_2(s) \cdot g_{\text{mAr}} \cdot Z_r(s)}{1 + \text{CG}_2(s) \cdot g_{\text{mAr}} \cdot Z_r(s)} \cdot \text{EA}_2(s) \end{cases}$$
(10)

Notice that at low frequency, the dc gains of Loop-2 and Loop-3 are approximated to the gains of EA_1 and EA_2 $(A_1 \text{ and } A_2)$. Therefore, they are insensitive to the loading conditions. To estimate the overall analog loop stability, it is broken at the output of the EA. A variable resistor is used to manually tune $V_{\text{OUT}} = V_{\text{REF}}$. This emulates the DI section effect in dc, while break it in ac.

Simulated in the TT corner and 27 °C, the Bode plots of these three analog loops are given in Fig. 13. As analyzed, the Loop-1 gain, which is essentially the p-gain for fast response,

Fig. 12. Breaking point of Loop-1, -2, -3, and overall analog loops, for the stability simulation.

Fig. 13. Bode plots of Loop-1, -2, and -3 at (a) heavy load, $I_{A,dc} = 2$ mA, $I_D = 8$ mA, (b) light load, $I_{A,dc} = 1 \ \mu$ A, $I_D = 0$, and (c) bode plots of the overall analog loops under heavy and light loads. All cases are with $V_{\rm IN} = 0.6$ V and $V_{\rm OUT} = 0.55$ V.

is 10 and 22 dB at heavy load and light load, respectively. Also, the frequency responses of Loop-2 and -3 are almost the same. The 29-dB Loop-2 gain can provide a soft regulation at very light load. The phase margins of Loop-1, -2, and -3 are 110°, 45°, and 45°, respectively. The worst phase margin of Loop-2 and Loop-3 is 35°, found in the SS corner, 0 °C, $V_{\rm IN} = 0.5$ V. The phase margins of Loop-2 and -3 can be improved by increasing C_B . The overall phase margin is about 35° for both heavy and light loads, as given in Fig. 13(c).

D. PSR

The PSR improvement of this work can be explained from both small-signal and large-signal perspectives.

From the small-signal perspective, the PSR model of the conventional FVF-based ALDO is shown in Fig. 14(a). Its PSR can be expressed as

$$\text{PSR}_{\text{ALDO}} \approx \frac{1}{1 + \frac{r_{\text{dsA}}}{R_{\text{LOAD}} || (1/sC_{\text{OUT}})} + \text{EA}_1(s)\text{CG1}(s)r_{\text{dsA}}g_{\text{mA}}}.$$
(11)

For the main loop of the proposed AP-DI LDO as shown in Fig. 14(b), the $PSR_{LOOP1+2}$ expression is the same as (11) but replacing the r_{dsA} term with $r_{ds} = r_{dsA}||r_{dsD}$. It should be noticed that the PSR here is worse than that of the conventional ALDO. The reason is that the $r_{dsA}||r_{dsD}$ here is smaller than r_{dsA} , but the overall g_m is not increased proportionally, since the g_{mD} can be neglected when the supply ripple frequency f_{ripple} is comparable with f_{CLK} . This phenomenon will be exacerbated at heavy load, because $r_{ds} \cdot g_{mA}$ can be written as

$$r_{\rm ds} \cdot g_{\rm mA} = \frac{V_{\rm dropout}}{I_{\rm LOAD}} \cdot \sqrt{2\mu_{\rm PA}C_{\rm OX}\frac{W}{L}}I_A$$
$$= V_{\rm dropout} \cdot \sqrt{\alpha \cdot \frac{2\mu_{\rm PA}C_{\rm OX}\frac{W}{L}}{I_{\rm LOAD}}}$$
(12)

Fig. 14. PSR small-signal model of (a) conventional FVF-based ALDO, (b) AP-DI with Loop-2, (c) AP-DI with Loop-3, and (d) AP-DI with all loops.

Fig. 15. Simulated PSRs versus frequency for DI only, DI-AP without Loop-2, and DI-AP with Loop-2.

where μ_{PA} is the hole mobility, and C_{OX} is the gate-oxide unit capacitance. If the I_A/I_{LOAD} ratio α is small at heavy load, $r_{ds} \cdot g_{mA}$ becomes small, and PSR will be degraded.

To mitigate this, we add Loop-3 to control $I_{A,dc}$, making it to adaptively increase when I_{LOAD} increases, maintaining the α value roughly. The PSR small-signal model of the Loop-1 and Loop-3 is included in Fig. 14(c). Also, the derived PSR expression is given in (13), as shown at the bottom of the next page. C_r is the capacitance at V_r node. Comparing (11) and (13), if the replica loop matches the main loop, the PSR_{LOOP1+3} can be close to PSR_{LOOP1+2}. However, consider the mismatch, the PSR will be degraded.

In this article, the Loop-2 can be reused to offer about 6-dB improvement for the PSR. The small-signal model of all loops is shown in Fig. 14(d) and the derived expression in (14), as shown at the bottom of the next page. Compared to (13), (14) has the same numerator. However, if matched, the $EA_2(s) \cdot [r_{dsr} \cdot g_{mAr} \cdot CG_2(s) + r_{ds} \cdot g_{mA} \cdot CG_1(s)]$ term in the denominator almost doubles. However, still, the 6-dB improvement can be degraded by the mismatch.

Fig. 16. Simulated I_D , I_A , and V_{OUT} transient waveforms when $I_{LOAD} = 10$ mA, with $I_{A,dc} = 2$ and 3 mA.

This analysis can be verified by the simulation results shown in Fig. 15, where $V_{IN} = 0.75$ V, $V_{REF} = 0.7$ V, and $I_{LOAD} =$ 10 mA. Both the curves of w/o and with Loop-2 are obtained from the ac small-signal simulation with $I_{A,dc} = 3$ mA, while that of DI-only case is simulated using transient analysis with $f_{CLK} = 5$ MHz. The amplitude of V_{IN} ripple (V_{ripple}) equals to 40 mV_{PP}. From the results, Loop-2 improves the PSR by 5.3 dB. Also, as predicted, the PSR of DI-only begins to degrade at 10 kHz, which is much lower than f_{CLK} .

From the large-signal perspective, the adaptive changing on $I_{A,dc}$ allows an enlarged I_A swing. This is helpful to

Fig. 17. Chip microphotograph of the proposed LDO.

Fig. 18. Measured load regulation for $V_{IN} = (a) 1.2$ and (b) 0.6 V.

handle the large current ripple caused by the supply noise, as explained in Fig. 16. The simulated transient waveforms of I_A , I_D , and V_{OUT} are shown when $I_{LOAD} = 10$ mA. I_A can respond with the opposite phase to I_D to maintain a reduced V_{OUT} ripple. If $I_{A,dc}$ is set to 3 mA, the full swing of I_A is allowed, and V_{OUT} ripple can be reduced to 4.5 mV. In contrast, if $I_{A,dc} = 2$ mA, the I_A is clipped to 0 but expected to swing to an even lower level. When clipped, the LDO is vulnerable to the input noise, hence the V_{OUT} ripple is deteriorated by 3.5 mV (5-dB PSR degradation).

Fig. 19. Measured line regulation for $I_{LOAD} = 10$ mA.

IV. MEASUREMENT RESULTS

The proposed LDO is fabricated in a 65-nm CMOS process. Fig. 17 shows the chip micrograph, with an active area of 0.04 mm², including a 20-pF on-chip C_{OUT} , a 13-pF C_1 , and a 26-pF C_B . The CLK is externally generated.

One chip was measured at the room temperature. The measured load regulation is presented in Fig. 18, for $V_{\rm IN} = 0.6$ and 1.2 V. Due to the adaptive $I_{\rm A-dc}$ scheme, a precise regulation can be achieved when $I_{\rm LOAD} > 1$ mA. The output accuracy becomes degraded at light load, because the AP section takes over the LDO with a relatively low gain. Nevertheless, this helps to remove the light load LCO. The measured line regulation performance for $I_{\rm LOAD} = 10$ mA is given in Fig. 19.

Fig. 20(a) shows the measured transient response with $V_{\rm IN} = 0.6$ V, $V_{\rm REF} = 0.55$ V, $f_{\rm CLK} = 5$ MHz, when $I_{\rm LOAD}$ changes from 0 to 10 mA within a 5-ns transition edge times ($T_{\rm EDGE}$). A 64-mV undershoot and a 46-mV overshoot are achieved, which are mainly determined by the Loop-1 and the M_{10} , respectively. For $I_{\rm LOAD} = 0$, the steady-state $V_{\rm OUT}$ deviates about 8 mV from $V_{\rm REF}$, but LCO is then removed as predicted. For the 3-to-10-mA $I_{\rm LOAD}$ step shown in Fig. 20(b), the $V_{\rm OUT}$ undershoot is reduced to 44 mV, and $V_{\rm OUT}$ is well regulated to $V_{\rm REF}$ in the steady state, with a 3-mV LCO. The dynamic voltage scaling (DVS) transient waveforms are shown

Fig. 20. Measured transient responses with a (a) 0–10- and (b) 3–10-mA I_{LOAD} step, both within a 5-ns T_{EDGE} . $V_{\text{IN}} = 0.6$ V, $V_{\text{REF}} = 0.55$ V, and $f_{\text{CLK}} = 5$ MHz.

Fig. 21. Measured DVS transient response with $V_{IN} = 0.6$ V, and V_{REF} changes from 550 to 400 mV with a 50 mV/step.

in Fig. 21, where $V_{\rm IN} = 0.6$ V, $V_{\rm REF}$ changes from 550 to 400 mV with a 50 mV/step. As can be seen, $V_{\rm OUT}$ can track the $V_{\rm REF}$ changing.

Figs. 22 and 23 show the measured PSR performances. Two measurement conditions are defined here: (Case-1): $V_{IN} = 0.75$ V, $V_{REF} = 0.7$ V, while (Case-2): $V_{IN} = 0.6$ V, $V_{REF} = 0.5$ V. Both cases are with $f_{CLK} = 5$ MHz and $I_{LOAD} = 10$ mA. Fig. 22(a) for Case-1 shows the measured V_{IN} and V_{OUT} transient waveforms, where a 5-mV_{pp} V_{OUT} ripple is recorded with an input ripple of $f_{ripple} = 1$ -MHz

Fig. 22. Measured transient waveforms of V_{IN} and V_{OUT} , with $I_{LOAD} = 10 \text{ mA}$, $f_{ripple} = 1 \text{ MHz}$, $f_{CLK} = 5 \text{ MHz}$ when in (a) Case-1 and (b) Case-2.

Fig. 23. Measured PSR from 100 kHz to 10 MHz, $f_{CLK} = 5$ MHz, $I_{LOAD} = 0, 5, 10$ mA, for (a) Case-1 and (b) Case-2.

and 40-mV_{pp} amplitude. In Fig. 22(b) for Case-2, the PSR is -22-dB at 1 MHz when the amplitude of input ripple is 65 mV_{pp}. The measured PSR curves versus frequency are given in Fig. 23, under $I_{\text{LOAD}} = 0$, 5, and 10 mA. The PSR variation against I_{LOAD} is reduced because I_A can be adaptively increased with I_{LOAD} .

The proposed LDO is compared with the state-of-the-art works in Table I. Thanks to the AP-DI architecture, the proposed LDO is endowed with the fast response feature of an ALDO, together with the high dc gain property of a conventional DLDO. The maximum output current is 10 mA, and the measured quiescent current is 29 μ A, hence the calculated maximum current efficiency is 99.71%. Mean-while, it achieves a 0.37-ps figure-of-merit-1 (FoM1) [31] and

	[11] Salem, JSSC'18	[19] Huang, ISSCC'17	[20] Nasir, JSSC'18	[21] Ma, ISSCC'18	[22] Kundu, JSSC'19	[23] Liu, ISSCC'19***	[24] Wang, CICC'19	This work
Process [nm]	65	65	130	28	65	14	65	65
Area [mm ²]	0.0023	0.034	0.08	0.0055	0.037	0.024	0.04	0.04
P-path	Digital	RC HPF	Digital	NMOS	Digital	ALDO	D-G couple	FVF
I-path	Digital	SR	Analog EA	SR	VCO	Digital	СР	SR
$V_{\rm IN}[{ m V}]$	0.5-1	0.5-1	0.6, 1.1-1.2	0.4-0.55	0.6-1.2	1-1.2	0.5-1	0.5-1.2
$V_{\rm OUT}[V]$	0.3-0.45	0.45-0.95	0.5-0.55, 0.8-1.1	0.35-0.5	0.4-1.1	0.7-0.85	0.45-0.95	0.45-1.15
Max. f_{CLK} [MHz]	240	10	560	4	> 3.9	N.A.	1	5
C _{OUT} [pF]	400	0	500	24	40	200	0-10,000	20
I _{LOAD} range [mA]	0.01-2	2-20	0.03-12	0.5-20.5	10-100	0.01-530	0.001-105	0-10****
$\frac{\Delta V_{\rm OUT}[\rm mV]}{(a) \Delta I_{\rm LOAD}[\rm mA]}$	40@1.06	105@10	240@10.3	117@20	108@50	83@15	185@100	64@10****
PSR enhanced by	N.A.	N.A.	Analog gain	N.A.	N.A.	Analog gain Feedforward	N.A.	Analog gain Replica loop
1 MHz PSR [dB] (a) $V_{IN}/V_{dropout}$ [V] (b) W_{ripple} [V _{pp}]	N.A.	N.A.	-12 @1.2/0.4 @N.A.	N.A.	-35 @1/0.2 @N.A.	-18 (1LDO) @N.A.@N.A. -42 (8LDO) @N.A.@N.A.	N.A.	-18 @ 0.75/0.05@0.04 -22 @ 0.6/0.1@0.065
$I_{\rm Q}[\mu {\rm A}]$	14	3.2	26	0.81	10-1070	4.35-27.4	4.9	29****
Max. Current efficiency (%)	99.8	99.97	98.6	99.99	99.5	99.97	99.99	99.71****
FoM1 [ps]*	199	0.23	166	0.0057	0.47	1.38	0.0038	0.37****
Edge time ratio K	5	5	1	15	4000	2.5	5	25
FoM2 [V]**	0.0026	0.00015	0.0006	0.00007	9.2	0.00035	4.50E-05	0.0044****
•			•	-		•		•

 TABLE I

 Comparison With the State-of-the-Art Works

*FoM1 = $C_{\text{OUT}} \cdot \Delta V_{\text{OUT}} \cdot I_Q / I_{\text{OUT}}^2$ [30]. ** FoM2= $K \cdot \Delta V_{\text{OUT}} \cdot I_Q / \Delta I_{\text{OUT}}$ [31].

**** High PSRR mode. ***** V_1

. $V_{\rm IN} = 0.6 \,\rm V, \ V_{\rm REF} = 0.55 \,\rm V.$

0.0044-V FoM2 [32], which are comparable or better than the state-of-the-art works.

In addition, this article achieves a moderate PSR performance. Due to the moderate analog loop gain and about 6-dB PSR improvement from Loop-2, this article improves PSR with a larger V_{ripple} at a low V_{IN} and low $V_{dropout}$, compared with the hybrid LDOs in [20] and [23]. Also, the PSR can be further improved by allocating the load current to more ALDO tiles as in [23].

Finally, this article reaches $I_{\text{LOAD,min}} = 0$ without LCO. To extend the $I_{\text{LOAD,max}}$, the proportional part should be designed with higher gain and faster response, which will help to reduce the V_{OUT} spike under a larger ΔI_{LOAD} step.

V. CONCLUSION

This article analyses the reasons for slow transient response, bad PSR, and large LCO in a conventional DLDO. These issues are addressed through the AP control in the proposed AP-DI LDO. The feature of high output accuracy in a conventional DLDO is maintained by the DI section. The AP part, implemented with an FVF, responds fast to the load step. A replica loop is added to adaptively define the AP output current, resulting in a moderate PSR performance. To reduce the LCO and extend the $I_{LOAD,min}$ limit to zero, the AP will output all the I_{LOAD} at a very light load. An EA with moderate gain is not only helpful for a light-load regulation but also enhances the PSR by about 6 dB. The measurement results verify the effectiveness of the proposed scheme.

REFERENCES

- S. T. Kim *et al.*, "Enabling wide autonomous DVFS in a 22 nm graphics execution core using a digitally controlled fully integrated voltage regulator," *IEEE J. Solid-State Circuits*, vol. 51, no. 1, pp. 18–30, Jan. 2016.
- [2] P. A. Meinerzhagen *et al.*, "An energy-efficient graphics processor in 14-nm tri-gate CMOS featuring integrated voltage regulators for fine-grain DVFS, retentive sleep, and VMIN optimization," *IEEE J. Solid-State Circuits*, vol. 54, no. 1, pp. 144–157, Jan. 2019.

- [3] S. B. Nasir, S. Gangopadhyay, and A. Raychowdhury, "5.6 A 0.13μm fully digital low-dropout regulator with adaptive control and reduced dynamic stability for ultra-wide dynamic range," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2015, pp. 98–99.
- [4] C.-J. Park, M. Onabajo, and J. Silva-Martinez, "External capacitor-less low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range," *IEEE J. Solid-State Circuits*, vol. 49, no. 2, pp. 486–501, Feb. 2014.
- [5] Y. Lu, Y. Wang, Q. Pan, W.-H. Ki, and C. P. Yue, "A fully-integrated low-dropout regulator with full-spectrum power supply rejection," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 62, no. 3, pp. 707–716, Mar. 2015.
- [6] J. Jiang, W. Shu, and J. S. Chang, "A 65-nm CMOS low dropout regulator featuring >60-dB PSRR over 10-MHz frequency range and 100-mA load current range," *IEEE J. Solid-State Circuits*, vol. 53, no. 8, pp. 2331–2342, Aug. 2018.
- [7] Y. Okuma et al., "0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65 nm CMOS," in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Sep. 2010, pp. 1–4.
- [8] M. Huang, Y. Lu, S.-W. Sin, U. Seng-Pan, and R. P. Martins, "A fully integrated digital LDO with coarse–fine-tuning and burst-mode operation," *IEEE Trans. Circuits Syst.*, *II, Exp. Briefs*, vol. 63, no. 7, pp. 683–687, Jul. 2016.
- [9] Y.-J. Lee et al., "A 200-mA digital low drop-out regulator with coarsefine dual loop in mobile application processor," *IEEE J. Solid-State Circuits*, vol. 52, no. 1, pp. 64–76, Jan. 2017.
- [10] G. Cai, C. Zhan, and Y. Lu, "A fast-transient-response fully-integrated digital LDO with adaptive current step size control," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 66, no. 9, pp. 3610–3619, Sep. 2019.
- [11] L. G. Salem, J. Warchall, and P. P. Mercier, "A successive approximation recursive digital low-dropout voltage regulator with PD compensation and sub-LSB duty control," *IEEE J. Solid-State Circuits*, vol. 53, no. 1, pp. 35–49, Jan. 2018.
- [12] Y. Zhang, H. Song, R. Zhou, W. Rhee, I. Shim, and Z. Wang, "A capacitor-less ripple-less hybrid LDO with exponential ratio array and 4000 x load current range," *IEEE Trans. Circuits Syst.*, *II, Exp. Briefs*, vol. 66, no. 1, pp. 36–40, Jan. 2019.
- [13] Y.-H. Lee *et al.*, "A low quiescent current asynchronous digital-LDO with PLL-modulated fast-DVS power management in 40 nm SoC for MIPS performance improvement," *IEEE J. Solid-State Circuits*, vol. 48, no. 4, pp. 1018–1030, Apr. 2013.
- [14] F. Yang and P. K. T. Mok, "A nanosecond-transient fine-grained digital LDO with multi-step switching scheme and asynchronous adaptive pipeline control," *IEEE J. Solid-State Circuits*, vol. 52, no. 9, pp. 2463–2474, Sep. 2017.
- [15] X. Sun, A. Boora, W. Zhang, V. R. Pamula, and V. Sathe, "14.5 A 0.6to-1.1 V computationally regulated digital LDO with 2.79-cycle mean settling time and autonomous runtime gain tracking in 65 nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2019, pp. 230–232.
- [16] Z. K. Ahmed *et al.*, "A variation-adaptive integrated computational digital LDO in 22 nm CMOS with fast transient response," in *Proc. Symp. VLSI Circuits*, 2019, pp. C124–C125.
- [17] M. Huang, Y. Lu, S.-P. U, and R. P. Martins, "An analog-assisted triloop digital low-dropout regulator," *IEEE J. Solid-State Circuits*, vol. 53, no. 1, pp. 20–34, Jan. 2018.
- [18] D. Kim and M. Seok, "8.2 fully integrated low-drop-out regulator based on event-driven PI control," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Jan. 2016, pp. 148–149.
- [19] M. Huang, Y. Lu, S.-P. U, and R. P. Martins, "20.4 an output-capacitorfree analog-assisted digital low-dropout regulator with tri-loop control," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2017, pp. 342–343.
- [20] S. B. Nasir, S. Sen, and A. Raychowdhury, "Switched-mode-control based hybrid LDO for fine-grain power management of digital load circuits," *IEEE J. Solid-State Circuits*, vol. 53, no. 2, pp. 569–581, Feb. 2018.
- [21] X. Ma, Y. Lu, R. P. Martins, and Q. Li, "A 0.4 V 430 nA quiescent current NMOS digital LDO with NAND-based analog-assisted loop in 28 nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2018, pp. 306–308.
- [22] S. Kundu, M. Liu, S.-J. Wen, R. Wong, and C. H. Kim, "A fully integrated digital LDO with built-in adaptive sampling and active voltage positioning using a beat-frequency quantizer," *IEEE J. Solid-State Circuits*, vol. 54, no. 1, pp. 109–120, Jan. 2019.

- [23] X. Liu *et al.*, "14.7 a modular hybrid LDO with fast loadtransient response and programmable PSRR in 14 nm CMOS featuring dynamic clamp tuning and time-constant compensation," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2019, pp. 234–236.
- [24] X. Wang and P. P. Mercier, "A charge-pump-based digital LDO employing an AC-coupled high-Z feedback loop towards a sub-4fs FoM and a 105,000x stable dynamic current range," in *Proc. IEEE Custom Integr. Circuits Conf. (CICC)*, Apr. 2019, pp. 1–4.
- [25] W.-J. Tsou *et al.*, "20.2 digital low-dropout regulator with anti PVTvariation technique for dynamic voltage scaling and adaptive voltage scaling multicore processor," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2017, pp. 338–339.
- [26] M. Huang, Y. Lu, S.-W. Sin, S.-P. U, R. P. Martins, and W.-H. Ki, "Limit cycle oscillation reduction for digital low dropout regulators," *IEEE Trans. Circuits Syst.*, *II, Exp. Briefs*, vol. 63, no. 9, pp. 903–907, Sep. 2016.
- [27] M. Huang and Y. Lu, "An analog-proportional digital-integral multi-loop digital LDO with fast response, improved PSR and zero minimum load current," in *Proc. IEEE Custom Integr. Circuits Conf. (CICC)*, Apr. 2019, pp. 1–4.
- [28] L. G. Salem and P. P. Mercier, "A sub-1.55 mV-accuracy 36.9 ps-FOM digital-low-dropout regulator employing switched-capacitor resistance," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2018, pp. 312–314.
- [29] Z. Guo *et al.*, "Topological classification-based splitting–combining methodology for analysis of complex multi-loop systems and its application in LDOs," *IEEE Trans. Power Electron.*, vol. 34, no. 7, pp. 7025–7039, Jul. 2019.
- [30] P. Hazucha, T. Karnik, B. Bloechel, C. Parsons, D. Finan, and S. Borkar, "Area-efficient linear regulator with ultra-fast load regulation," *IEEE J. Solid-State Circuits*, vol. 40, no. 4, pp. 933–940, Apr. 2005.
- [31] J. Guo and K. N. Leung, "A 6-μW chip-area-efficient outputcapacitorless LDO in 90-nm CMOS technology," *IEEE J. Solid-State Circuits*, vol. 45, no. 9, pp. 1896–1905, Sep. 2010.

Mo Huang (Senior Member, IEEE) received the B.Sc., M.Sc., and Ph.D. degrees in microelectronics and solid-state electronics from Sun Yat-sen University, Guangzhou, China, in 2005, 2008, and 2014, respectively.

From 2008 to 2014, he was an IC Design Engineer and a Project Manager with Rising Microelectronic Ltd., Guangzhou. From 2015 to 2016, he was a Post-Doctoral Fellow with the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China. From 2017 to 2019, he was

an Associate Professor with the School of Electronic and Information Engineering, South China University of Technology (SCUT), Guangzhou. He is currently an Assistant Professor with the Institute of Microelectronics, University of Macau. His current research interests include analog and mixedsignal integrated circuit (IC) designs, power management IC design, and wireless power transfer.

Dr. Huang has served as a technical program committee member for many conferences and a reviewer for many journals. He was a recipient of the IEEE International Solid-State Circuits Conference (ISSCC) 2017 Takuo Sugano Award for Outstanding Far-East Paper.

Yan Lu (Senior Member, IEEE) received the Ph.D. degree in electronic and computer engineering from The Hong Kong University of Science and Technology (HKUST), Hong Kong, in 2013.

In 2014, he joined the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China, as an Assistant Professor. His research interests include wireless power transfer circuits and systems, low-power analog circuits, and next-generation power management solutions. He has coauthored more than 80 peer-reviewed technical

articles and one book entitled CMOS Integrated Circuit Design for Wireless Power Transfer (Springer) and edited one book entitled Selected Topics in Power, RF, and Mixed-Signal ICs (River Publishers).

Dr. Lu is serving as a TPC Member for International Solid-State Circuits Conference (ISSCC) and Custom Integrated Circuits Conference (CICC). He was a recipient/co-recipient of the 2018 Macao Science and Technology Award (second prize, with the first prize vacancy), the IEEE Solid-State Circuits Society Pre-doctoral Achievement Award for the period of 2013–2014, the IEEE CAS Society Outstanding Young Author Award in 2017, and the ISSCC 2017 Takuo Sugano Award for Outstanding Far-East Paper. He served as a Guest Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I in 2019 and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II from 2018 to 2019.

Rui P. Martins (Fellow, IEEE) was born in April 1957. He received the bachelor's, master's, Ph.D., and Habilitation for Full-Professor degrees in electrical engineering and computers from the Department of Electrical and Computer Engineering (DECE), Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal, in 1980, 1985, 1992, and 2001, respectively.

He has been with the DECE/IST, University of Lisbon, since October 1980. Since 1992, has been on leave from the University of Lisbon and with

the DECE, Faculty of Science and Technology (FST), University of Macau (UM), Macao, China, where he has been a Chair Professor since August 2013.

From 1994 to 1997, he was the Dean of the Faculty, FST. He has been a Vice-Rector of UM since 1997. He was a Vice-Rector (Research) from September 2008 to August 2018. He is a Vice-Rector (Global Affairs) for the period of September 2018-August 2023. Within the scope of his teaching and research activities, he has taught 21 bachelor and master courses and, in UM, has supervised (or co-supervised) 47 theses, Ph.D. (26) and masters (21). He has coauthored seven books and 11 book chapters. He holds 33 patents, USA (30) and Taiwan (3). He has published 537 articles, in scientific journals (217) and in conference proceedings (320), and other 64 academic works, in a total of 652 publications. In 2003, he created the Analog and Mixed-Signal VLSI Research Laboratory, UM, elevated in January 2011 to the State Key Laboratory (SKLAB) of China (the first in Engineering in Macao), being its Founding Director. He was the Founding Chair of UMTEC (UM company) from January 2009 to March 2019, supporting the incubation and creation in 2018 of Digifluidic, the first UM spin-off, whose CEO is a SKLAB Ph.D. graduate. He was also a Co-Founder of Chipidea Microelectronics (Macao) [now Synopsys-Macao] from 2001 to 2002.

Dr. Martins was the Founding Chair of the IEEE Macau Section from 2003 to 2005 and the IEEE Macau Joint-Chapter on Circuits and Systems (CAS)/Communications (COM) from 2005 to 2008 [2009 World Chapter of the Year of IEEE CAS Society (CASS)], the General Chair of the IEEE Asia-Pacific Conference on CAS (APCCAS) in 2008, the Vice-President (VP) of Region 10 (Asia, Australia, and Pacific) from 2009 to 2011, and the VP-World Regional Activities and Membership of the IEEE CASS from 2012 to 2013, an Associate Editor of the IEEE TRANSACTIONS ON CAS-II: EXPRESS BRIEFS from 2010 to 2013. He was nominated as the Best Associate Editor for the period of 2012-2013. He was a member of the IEEE CASS Fellow Evaluation Committee in 2013, 2014, and 2019, where he was the Chair in 2018. He was the Director of the IEEE Nominating Committee of Division I (CASS/EDS/SSCS) in 2014 and the IEEE CASS Nominations Committee from 2016 to 2017. In addition, he was the General Chair of the ACM/IEEE Asia South Pacific Design Automation Conference (ASP-DAC) in 2016. He received the IEEE Council on Electronic Design Automation (CEDA) Outstanding Service Award from the ACM/IEEE Asia South Pacific Design Automation Conference (ASP-DAC) in 2016. He was the Vice-President of the Association of Portuguese Speaking Universities (AULP) from 2005 to 2014, where he was the President from 2014 to 2017. He received two Macao Government decorations: the Medal of Professional Merit (Portuguese Administration) in 1999 and the Honorary Title of Value (Chinese Administration) in 2001. In July 2010, he was elected, unanimously, as a Corresponding Member of the Lisbon Academy of Sciences, being the only Portuguese Academician working and living in Asia.