A 0.0071-mm² 10.8pspp-Jitter 4 to 10-Gb/s 5-Tap Current-Mode Transmitter Using a Hybrid Delay Line for Sub-1-UI Fractional De-Emphasis

Yong Chen†, Member, IEEE, Pui-In Mak†, Fellow, IEEE, Zunsong Yang,
Chinh Chye Boon‡, Senior Member, IEEE, and Rui P. Martins†, Fellow, IEEE

Abstract—This paper proposes an ultra-compact 4 to 10-Gb/s 5-tap current-mode transmitter to realize the sub 1-UI fractional de-emphasis (DE) using a hybrid delay line, which is alternatively controlled by the voltage bias and clock. It exhibits the scalability between the clocked 0.5-UI and 1-UI DEs and data rate. The sub-1-UI DE provides wide tunability of the data amplitude and delay to compensate different channel losses between the 1st and 2nd Nyquist frequencies while effectively compensating the high-frequency portion of the pseudo-random binary sequence (PRBS) spectrum for data jitter improvement. Additional techniques are a two-step current-summing scheme, namely, two-step DE in the data path, and active inductors in both the data and clock paths to enhance the internal bandwidth without the need for passive inductors. In addition, we present an analytical model for predicting data-dependent jitter (DDJ) based on a generic system’s step response, derive the exact closed-form DDJ expression of DE, and verify its validity by mean of circuit simulation. Prototype in 65-nm CMOS technology, it achieves a figure-of-merit of 4.6 mW/Gb/s and an output jitter of 10.8 pspp at 10 Gb/s under a PRBS 2⁳¹ − 1 pattern. The data eyes measure 0.62-UI-horizontal and 19.5%-vertical openings after −20-dB channel loss. The die area is 0.0071 mm².

Index Terms—Fractional-de-emphasis (DE), CMOS, latch, active inductor (AI), bandwidth (BW) extension, data-dependent jitter (DDJ), current reuse, hybrid delay line, current-mode logic (CML), unit interval (UI), flip-flop (FF), pulse-width-modulated (PWM), current-mode transmitter, figure-of-merit (FOM).

I. INTRODUCTION

DE-EMPHASIS (DE) techniques have been widely explored for high-speed data transmission [1]–[3] to compensate the frequency-dependent channel loss. While the fully-clocked DE [4]–[11] could equalize the data eye by improving the vertical (VO) and horizontal (HO) openings, the improvement of data-dependent jitter (DDJ) is limited due to its fixed delay (td) of 1 unit interval (UI), in which the DDJ modeled with 2-impulse-based function must exist. Alternatively, the clocked 1-UI DE [Fig. 1(a)] employs the flip-flop (FF) line to propagate the integer-delayed signals, which are then multiplied by adjustable coefficients and finally combined as the amplitude DE. Yet, the offered DDJ equalization effect is marginal. It is possible to add the phase DE [5] for DDJ suppression by varying the data transition time, but demanding extra circuitries (e.g., duty-cycle control (DCC) and delay generation) for DDJ compensation. Despite the fact that the analog fractional DE [12]–[13] uses asynchronous active delay elements [Fig. 1(b)] and it can enable tuning around the integer td, each delay does not scale with different data rates (being tuned properly by voltage bias without the clocked control), thus the DDJ compensation becomes susceptible to the process variation. The time-based pulse-width-modulated (PWM) DE [14]–[19] is an option [Fig. 1(c)], realized by XOR-ing the PWM data with a variable clock generated by the DCC [14]–[15] or the tunable delay [16]–[19]. Yet, penalized by the duty-cycle distortion of the clock phases, the even and odd data eyes are asymmetric. This issue remains unsolved in the DE using the integrated pulse width modulation (iPWM) [20].

In view of the above, we propose a sub-1-UI fractional DE technique using a hybrid delay line, applied to realize a 10-Gb/s 5-tap current-mode (CM) transmitter (TX) that can flexibly adjust the equalization effects in both amplitude and timing. Prototype in 65-nm CMOS, the TX aided by a number of bandwidth (BW)-enhancement techniques achieves a better quality of the data eyes for both near- and far-end testing, while occupying a compact die area of 0.0071 mm².

Section II presents the proposed sub-1-UI DE and its time- and frequency-domain characteristics. Section III discusses the DDJ analysis of the proposed DE. Section IV focuses on the complete sub-1-UI fractional DE TX and its verification. Section V summarizes the experimental results, and finally Section VI draws the conclusions.

II. PROPOSED SUB-1-UI FRACTIONAL 5-TAP DE

In [21], the 0.5-UI DE is configured by quadrature half-rate clocking, whereas the 1-UI DE is configured by quadrature quarter-rate clocking + differential half-rate clocking. Both involve complicated timing calibration to reduce the DDJ. The core of the proposed DE technique is a hybrid delay line [Fig. 1(d)], which alternates two tunable fractional-delay cells with two clocked fixed-delay cells to support the tunability of both amplitude and delay. A single FF implemented by two latches, L1 and L2, generates two clocked fixed delays of \(t_{d2} = 0.5 \) UI and \(t_{d4} = 1 \) UI, respectively. Between them, the two fractional delays are for the variable \(t_{d1} = t_{d4} \) UI and \(t_{d3} = 0.5 + t_{d4} \) UI. Unless otherwise mentioned, we exemplify \(t_{d1} = 0.25 \) UI and \(t_{d3} = 0.75 \) UI as an example of \(t_{d} \) in Sections II and III. Unlike the analog fractional DE [12], [13], as shown in Fig. 1(b), that is more sensitive to the data rate, we insert the fractional delay \(t_{d} \) into different clocked latches [Fig. 1(d)], indicating that our solution upholds the scalability of the clocked DE in data-rate scaling. Thus, the clocked 0.5-UI and 1-UI DEs are insensitive to the process variation. All delayed signals are weighted \((a_{1-4})\) as the post-cursor taps and summed with the main tap \(\alpha \) weighted by \(a_{0} \) to generate the desired time-domain behavior of the 5-tap DE at the output \(y \) [Fig. 1(d)],

\[
y(t) = a_{0}x(t) - \sum_{i=1}^{4} a_{i}x(t-t_{d})
\]

(1)

The corresponding frequency-domain behavior of the proposed sub-1-UI fractional 5-tap DE is written as,

\[
Y(j\omega) = \left(a_{0} - \sum_{i=1}^{4} a_{i}e^{-j\omega t_{d}}\right)X(j\omega)
\]

(2)

where \(X(j\omega) \) and \(Y(j\omega) \) denotes the Fourier transform of \(x(t) \) and \(y(t) \), respectively. Then, we obtain the transfer behavior of the proposed sub-1-UI fractional 5-tap DE, such as the transfer function in the frequency domain

\[
H(j\omega) = a_{0} - \sum_{i=1}^{4} a_{i}e^{-j\omega t_{d}}
\]

(3)

and the corresponding unit impulse response in the time domain

\[
h(t) = a_{0}\sigma(t) - \sum_{i=1}^{4} a_{i}\sigma(t-t_{d})
\]

(4)

Due to the complicated time- and frequency-domain behaviors of (1) by independently adjusting \(a_{i} \) and \(t_{d} \) of each post-cursor tap, our analysis is up to the main tap plus one post-cursor tap by zeroing the coefficients of other post-cursor taps. Our analysis mainly aims to reveal the features of each post-cursor tap, e.g., DE effect and DDJ, in both the time and frequency domains. Therefore, the impulse response [Fig. 2(b)] is given by,

\[
h_{i}(t) = a_{0}\sigma(t) - a_{i}\sigma(t-t_{d})
\]

(5)

The integration of \(h_{i}(t) \) is the step response \(g_{i}(t) \) used for the DDJ calculation (Section III). When \(a_{i} \) is presetted, decreasing \(t_{d} \) of each post-cursor tap can move both the second term in (5) and the \(a_{0}\alpha \) transition at \(t_{d} \) in the step response \(g_{i}(t) \) [Fig. 2(d)] to the left. The pulse response \(y_{i}(t) \) [Fig. 2(c)] can be derived as,

\[
y_{i}(t) = x(t)*h_{i}(t)
\]

(6)

Compared with the conventional time-based PWM pulse with only two discrete voltage levels \(\pm 1 \) (i.e., rail-to-rail differential voltages), \(y_{i}(t) \) can be expressed as the partly amplitude-limited PWM pulse, in which the time-domain tunability occurs within two discrete voltage levels \((a_{0} + a_{1}, a_{0} - a_{1}) \). The impact of these DEs on the amplitude is 20log\((a_{0} + a_{1})/(a_{0} - a_{1})\). Theoretically, it exhibits the same DDJ for each post-cursor tap, i.e. both fractional \((0.25/0.5/0.75\text{-UI}) \) DE and 1-UI DE have the same rising and falling transitions.

The aforesaid time-domain compression behavior [Fig. 2(b) and (d)] matches the frequency-domain spreading behavior of the transfer function [Fig. 2(e)], with its magnitude given by,

\[
|H_{i}(j\omega)| = \sqrt{a_{0}^{2} + a_{i}^{2} - 2a_{0}a_{i}\cos(2\pi f_{d}t_{d})}
\]

(7)

When \(t_{d} \) decreases, the first peak located at \(f_{p} = 1/(2t_{d}) \) right-shifts and amplifies the higher frequency content of \(x(t) \). Fig. 3 depicts a theoretical illustration of (7). Each post-cursor tap \((a_{1-4}) \) can be designed to contribute to the low- and high-frequency gain with respect to the normalized frequency \(f_{0} \). Moreover, a clocked 1-UI DE [Fig. 3(a)] can only peak at \(f_{0} = 0.5 \) (Nyquist), while a clocked 0.5-UI DE [Fig. 3(b)] can shift the peaking to \(f_{0} = 1/(2\text{nd Nyquist}) \). Besides, our sub-1-UI fractional DE [Fig. 3(c) and (d)] not only can provide fine gain compensation between \(f_{0} = 0.5 \) to \(1 \), but also can extend the gain compensation beyond \(f_{0} = 1 \) (3rd and 4th Nyquist zones). This broadband multi-tap scheme shortens the data transition time, thereby suppressing the DDJ effectively before and after passing through the channel, as evidenced in the VO and HO results to be presented in Section V.
CHEN et al.: A 0.0071-MM2 10.8-PSpJITTER 4 TO 10-Gb/s 5-TAP CURRENT-MODE TRANSMITTER

III. PROPOSED DDJ ANALYSIS

Before delving into the theoretical analysis in this Section, we would like to remark that the data timing jitter (DTJ) [22], is separated into DDJ and random jitter (RJ) for simplicity. Herein, we consider that the magnitude of DTJ varies significantly (e.g., from 10^{-4} to 10 ps), one separated Line J is suggested to distinguish DDJ (above Line J) and RJ (below Line J). Observing the behavior of the DTJ reduction: large DTJ (obvious 2-impulse-based DDJ) is gradually reduced to small DTJ (i.e., obvious 2-impulse-based DDJ disappears) and then small DTJ converges to zero (i.e., RJ dominates), this Line J is the conceptual reference rather than the actual absolute value, indicating that it is floating up and down.

Fig. 4 shows the implementation of the sub-1-UI fractional 5-tap DE [Fig. 1(d)]. Its core is a hybrid delay line in the data path, which driven by the delay control signal (VDCTRL) and clock signal (CK) alternatively, through which the present signal x travels. The delayed signals become the four post-cursor voltage signals. They are amplified by 5 common-source amplifiers serving 1 main tap (G_{m1}) and 4 post-cursor taps (G_{m2}). Each post-cursor tap switches on/off driven by a control signal, with the 1st post-cursor tap is controlled...
by \(T_C \). Simultaneously, all the taps are summed in the cm domain. Thereafter, the 5-tap DE signal is combined at the output node \(y \), which is BW-limited due to the one-pole response consisting of the resistive load (50 \(\Omega \)) and parasitic capacitance (\(C_p \)). To arrive at the DDJ at \(y \), we mainly consider two nonideal factors: 1) the timing delay in the hybrid delay line will be discussed in Section IV-C. 2) we can denote a 1st-order RC frequency response \(H_{RC}(j\omega) \) with a 3-dB BW of \(\omega_0 \), and the associated time constant is \(\tau_{RC} = 1/\omega_0 \) for each tap in the data path.

Consider our implementation (Fig. 4), we developed an analytical model [Fig. 5(a)]. Compared to the pulse [Fig. 2(a)] as input, the pseudo-random binary sequence (PRBS) input [Fig. 5(b)] will be used in the following analysis. When \(t_{d2} = 0.5 \) UI is preset, the impulse response \(h_2(t) \) is plotted in Fig. 5(c) and Fig. 5(d) shows the ideal pulse response \(y_2(t) \) according to (6). Further, convolving \(y_2(t) \) with the impulse response \(g_{RC}(t) \) [Fig. 5(e)] results in the real output \(y_{RC}(t) \) [Fig. 5(f)]. The bandlimited effect of the 1st-order RC response impacts the progressive increment and decrement of the rising and falling transition in the partly amplitude-limited PWM signal within 1 UI, respectively. Additionally, it also determines the maximum amplitude (\(a_0 + a_1 \)) in the time domain.

To reveal the one-pole impact on the DE equalization [Fig. 6(a)], we first convolve \(h(t) \) with \(h_{RC}(t) \), and calculate its Laplace transform, and then obtain the overall transfer function \(H_{all}(j\omega) \) from \(x \) to \(y_{RC} \) in Fig. 5(a),

\[
H_{all}(j\omega) = H_1(j\omega) \cdot H_{RC}(j\omega)
\]

Its magnitude response entails the DE reduction and the movement of the peak location \(f_{peak} \). \(\beta = e^{-T_B/T_{RC}} \) defines the relationship between the time constant of the 1st-order RC response and data rate. For an unlimited BW, \(\beta \) approaches zero in Fig. 6(b) and (c), the lossless DE is located at different peaking locations are 2, 1, 0.67 and 0.5, respectively. For \(0 < \beta < 0.2 \), both DE and \(f_{peak} \) drop faster when \(t_{d2} \) goes up. Yet, a 0.25-UI DE still has the high-frequency amplification to improve the rising or falling edge. If increasing \(\beta \) further, DE and \(f_{peak} \) vanish firstly, owing to the wider BW required by the narrower fractional DE.

Unlike the DDJ of signals (e.g., duobinary [23] and non-return-to-zero [22] and [24], [25]) induced by unpredicted and complicated ISI effects, the DDJ of DE is mainly caused by the predicted ISI effect. Thus, we aim to derive a closed-form DDJ expression of DE based on the one-pole step response \(g_{RC}(t) \). The overall step response of DE with a 1st-order RC response can be written by the integration of the inverse Laplace transform of (8).

\[
g_{all}(t) = a_0 g_{RC}(t) - a_1 g_{RC}(t - t_d) \tag{9}
\]

From another perspective, we can obtain \(g_{all}(t) \) by deriving the step responses of different taps in the data path and combining them. The Appendix is about this method.

Depicted in Fig. 7(a), we observe DDJ, i.e., \(\Delta t = (t_2 - t_1)T_B \), generated by the derivation between two zero-crossings in two step responses [e.g., \(g_1(t) \) and \(g_2(t) \)] with different initial values (e.g., \(-A_0 \) and \(-A_1 \)) at \(t = 0 \). When the observe at time approaches \(t_{d2} \), they will go up and converge to the maximum value of \(A_2 \) at \(t_{d2} \) together through both step responses [e.g., \(g_1(t) \) and \(g_2(t) \)], namely that the initial derivation \((A_1 - A_0) \) on the waveform reduces to zero at \(t_{d2} \). Between \(t_{d2} \) and 1 UI, \(g_1(t) \) and \(g_2(t) \) slowly fall together with the same one-pole step response. With fixed 1-UI DE, the DDJ reaches the maximum value under \(t_{d4} = 1 \) UI, at that moment \(-A_1 \) equals to the minimum value \((–A_2) \) of the pulse diagram [Fig. 7(a)]. As \(t_{d2} \) decreases, \(-A_2 \) at \(t_{d2} \) shifts to the upper left, \(-A_1 \) moves upward at \(t = 1 \) UI, resulting in the initial derivation reduction. This means \(g_2(t) \) keeps close to \(g_1(t) \) within \((0, t_{d5}) \). When \(t_{d5} \) approaches \(t_5 \), the large DTJ decreases gradually (namely the obvious 2-impulse-based DDJ vanishes gradually), implying that RJ will dominate the performance after Line J (see Fig. 8 later). If reducing further \(t_{d5} \), RJ will drop. Until \(t_{d5} = t_3 \), RJ disappears ideally, indicating that there is no DE. With \(t_{d} \) fixed, DDJ increases with the increment of DE. The eye diagram in Fig. 7(a) can be unfolded to the time-domain waveform in Fig. 7(b). Herein, \(g_{all}(t) \) will be calculated in the Appendix. The two figures have the same y-axis scale. The boundary mechanism of DDJ can be illustrated visually. Previously-competitive ZEROS, generally more than two consecutive ZEROS, lead to enough time before \(t = 0 \) to stabilize \(-A_0 = -(a_0 - a_1) \). The 0-to-1 transition appears at \(t = 0 \) in the Case I, correspondingly, \(g_1(t) \) in the second term of (A3) in the Appendix begins to increase gradually. A similar behavior repeats for a sequence of “...110...”. Yet, the single ZERO pulse (i.e., a series bits of “...101...”) as the Case II results in \(g_2(t) \) in the fourth term of (A5), whose ascent can be determined by the initial value \(-A_1 \) at \(n \) UI, and the BW of the 1st-order RC response. By solving \(g_1(t) = 0 \) and \(g_2(t) = 0 \), the two instant times \(t_1 \) and \(t_2 \) can be solved and \(\Delta t \) is written as,

\[
\Delta t = (t_2 - t_1)T_B = \frac{1}{\omega_0} \ln \left[1 + \frac{A_1}{A_0} e^{\omega_0 t_{d2}} - 1 \right] \cdot e^{-\omega_0 T_B} \tag{10}
\]

Interestingly, we can directly extract two general step responses, namely, \(g_1(t) \) with \(A_{ZS} = A_m \) and \(A_{ZI} = -A_0 \), and \(g_2(t) \) with \(A_{ZS} = A_m \) and \(A_{ZI} = -A_1 \), as shown in Fig. 7(a). Thus, we can rewrite \(\Delta t \) as,

\[
\Delta t = \frac{1}{\omega_0} \ln \left[\frac{A_m + A_1}{A_m + A_0} \right] \tag{11}
\]
where A_1 is the only variable to be solved. Furthermore, Δt is related to the initial value A_1 of $g_2(t)$, determined by t_{di}. Based on the third term of (A3), A_1 will become,

$$A_1 = (a_0 - a_1) - 2e^{-\omega_0 T_B} (a_0 - a_1 e^{\omega_0 t_{di}} T_B)$$ \hfill (12)

Plotted in Fig. 8, (11) is an accurate simplification of (10) and provides purely-theoretical intuition, but it is only suitable for the 1st-order RC. Fig. 8(a) and (b) show the calculated DDJs and their close-up view under four time delays covering the 6-to-14 Gb/s data rate, respectively. We can exactly
predict the constant obvious 2-impulse-based DDJ of the integer DE regardless of the data rate. Upon traveling through the fractional DE (e.g., \(t_{d3} \rightarrow t_{d2} \rightarrow t_{d1} \)), the obvious 2-impulse-based DDJ decreases by degrees, and RJ will decrease and dominate [Fig. 8(b)], finally there is no jitter in theory. Regrettably, we cannot fix the borderline (Line J) between DDJ and RJ, and both purely-calculated jitters are separated at \(t_{d1} = 0.25 \text{ UI} \) and \(t_{d2} = 0.5 \text{ UI} \), with the former much smaller than the latter. Regarding different data rates, the calculated DDJ goes up almost exponentially with the increment of the post-cursor tap time delay and converges into the point “A” at the 1-UI time delay, as highlighted in Fig. 8(c) and (d). Also, the DDJ for the fractional DE increases along with the data rate. If the BW is sufficiently large and fixed, \(A_1 \) is infinitely close to \(A_m \) at \(t_{d1} = 1 \text{ UI} \). Thus, equation (10) can be simplified as,

\[
\Delta t = \frac{1}{a_0} \ln(1 + \frac{a_1}{a_0} - e^{-\omega_0 T_R}) \approx \frac{1}{a_0} \ln(1 + \frac{a_1}{a_0}) \tag{13}
\]

Considering an extremely small rounding error, i.e., \(e^{-\omega_0 T_R} \) is always less than 0.0046 across the 6-to-14-Gb/s data rate, therefore, equation (13) is independent of the data rate.

IV. TX IMPLEMENTATION

A. TX Architecture

To improve the internal BW in the data path, the summing of all taps (Fig. 4) realized in the CM domain has two steps (Fig. 9). We call it “two-step DE” technique. The first step is among the 4 post-cursor taps at a low-impedance node provided by a current-reuse tunable active inductor (AI) [26]–[28], which also enhance the signal swing before delivering it to the output driver. The 4-bit post-cursor tap control signals, \(T_F, T_E, T_D, \) and \(T_C \), define the 16 operation modes, involving TX without DE (S0) and with DE (S1-S15), detailed in Table I. The second step is among \(I_{main} \) (main tap) and tunable \(I_{tap} \) (sum of the 4 post-cursor taps) generating \(D_{out} \) at the 50-\(\Omega \) load. As such, the speed limit of the power-hungry output driver (i.e., \(G_{m3} \) and \(G_{m4} \)) can be partially shifted to the low-power pre-amplifiers (i.e., \(G_{m2} = G_{m4}/4 \)), enhancing the internal BW, where we tune \(G_{m4} \) for targeting \(G_{m4} = G_{m3}/2 \). The AIs in both the main-tap and post-cursor-tap paths further boost the BW. By separately optimizing them and adjusting \(V_{L,SET} \), we can balance the transmission delay between the main-tap and post-cursor-tap paths. The clock buffer is embedded with a grounded AI [23], [26] and [28] for gain peaking (simulated a 3.1-dB gain at 10 GHz in the employed 65-nm CMOS process). The FF1 synchronizes the input \(D \) in while generating the main-tap signal \(x(t) \). Its function is alike the synchronization at the output of the previous multiplexer. Here, the overall hybrid delay line is also known as a FF2 driven by a clock buffer, in which we insert two tunable delay cells controlled by VDCTRL, which is generated by an off-chip bias.

B. Tunable Delay Cell

The proposed tunable delay stage and current-mode logic (CML) clocked latch are similar to match their layout, but both circuits are different from \(S_{p,n} \) [Fig. 10(a)]. Boosting VDCTRL steers more \(I_{DCo} \) from \(I_{DCb} \), increasing the transconductance \((g_{m3}) \) of \(M_3 \) and the time delay \(t_d \approx 2\ln(2-C_{L}/(R_D/(1/g_{m3})) \). Here, \(R_D \) and \(C_L \) are resistive and parasitic capacitive loads, respectively. Due to the channel-length modulation of the bias current, \(I_{DCb} \) slightly

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 20,2020 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.
Fig. 9. Proposed complete sub-1-UI fractional DE TX. We use cm and AI techniques to extend the internal BW of the data and clock paths.

TABLE I

DETAILS OF THE OPERATION MODE IN THE PROPOSED SUB-1-UI FRACTIONAL DE TX.

<table>
<thead>
<tr>
<th>Tap Control</th>
<th>4-Bit Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>T_F</td>
<td>0</td>
</tr>
<tr>
<td>T_E</td>
<td>0</td>
</tr>
<tr>
<td>T_D</td>
<td>0</td>
</tr>
<tr>
<td>T_C</td>
<td>0</td>
</tr>
</tbody>
</table>

By directly changing the load resistance [12], 107.8% current variation generates a tunable delay range of \(\sim 3.5x \).

C. Timing Delay Consideration

Due to the ideal retiming of the negative edge-triggered FF1, as displayed in Fig. 11(a), \(t_{\text{d}_{55}} = T_B/2 \) (between \(x_D \) and \(x \)) and \(t_{\text{d}_{11}} = T_B \) (between \(x_F \) and \(x \)) are fixed by the positive level-sensitive latch L21 and negative level-sensitive latch L22, respectively. \(T_B \) denotes the data period. Both tunable delay cells provide \(t_{\text{d}_{1}} \) equal to \(t_{\text{d}_{55}} \) between \(x_C \) and \(x \), and \(t_{\text{d}_{1}} \) pluses \(T_B/2 \) will result in \(t_{\text{d}_{75}} \) between \(x_E \) and \(x \). The hybrid delay line based on the clocked latch + FF has to consider the clock-to-Q (\(t_{\text{cQ}} \)) delays in the data-clocked path [Fig. 11(a)]. Fig. 11(a) gives the timing parameters, where \(t_{\text{cQ21}}, t_{\text{cQ22}} \) and \(t_{\text{cQ1}} \) denote the clock-to-Q delays of L21, L22 and FF1, respectively. Correspondingly, Fig. 11(b) shows the timing diagram in Fig. 11(a). FF1 and FF2 share the same CK. \(t_{\text{d}_{p55}} \) is only determined by VDCTRL, independent of CK. However, other relative timing delays (e.g., \(t_{\text{d}_{p25}}, t_{\text{d}_{p75}} \)
Fig. 11. (a) Effect of timing parameters in the data-clocked path. (b) Detailed timing diagram and (c) simulated relative timing delay error versus data rate.

and $t_{d_{p1}}$ are related to CK in Fig. 9(b). In the equations in Fig. 11(b), we extract the relative timing delay errors of $t_{ae1} = t_{cq21} - t_{cq1}$ and $t_{ae2} = t_{cq22} - t_{cq1}$, normalized to T_B and plotted in Fig. 11(c) based on circuit simulation. Interestingly, two curves (t_{ae1} and t_{ae2}) cross the zero point in the vertical axis upward as data rate goes up. This happens because the occurrence of two VDTCRL-controlled delay blocks slightly change the internal operating points in the hybrid delay line and further incur in different clock-to-Q delays between FF1, L21 and L22. Also, the parasitics in the data path contribute to this phenomenon as the data rate increases.

D. Simulation Results

To study the DDJ of the proposed fractional DE, a jitter-free PRBS of 2^7-1 length as an input (D_{in}) passes through the complete fractional DE TX (Fig. 9) controlled by the jitter-free CK, and then D_{out} outputs the 10-Gb/s DE eyes [Fig. 12(a)] with only one post-cursor tap activated. The last 1-to-0 transition follows the consecutive bit string of “1”. Its zero-crossing time t_1 determines the minimum boundary of DDJ. A bit string of “010”, namely that a single digital one pulse next to the last 1-to-0 transition appears, whose zero-crossing time t_2 estimates the maximum boundary of DDJ. The DE under S1 mode exhibits the partially established response, which is due to the insufficient BW in the data path resulting in DE reduction [Fig. 12(a)]. Conversely, it shows a smaller jitter (e.g., $\Delta t_{p25} = 0.25$ ps) due to a sufficient roll-off time when its zero-crossing time t_2 approaches t_1 [Fig. 12(b)]. For S2 mode, we obtain the expected DE of 5.48 dB without sacrificing the jitter performance (i.e., $\Delta t_{p5} = \Delta t_{p25}$). Both cases elicit the RJ with a Gaussian distribution [Fig. 12(c)]. When entering S4 mode and transferring from S4 to S8 mode, the DE still remains, but t_2 increases because the 1-to-0 transition departs from that as the minimum boundary [Fig. 12(d)]. Fig. 12(e) shows the simulated jitter of $\Delta t_{p75} = 0.713$ ps (S4) and $\Delta t_1 = 3.55$ ps (S8). Therefore, the obvious 2-impulse-based DDJ [Fig. 12(f)] appears and rises up significantly. Based on our simulation with ideal data and clock inputs, the main contribution of RJ can be divided into three parts. First, the noise of the sub-blocks in the data path is converted to RJ [23]. The second is related to the output random jitter from the clock buffer in the clock path [23]. The last is the use of an AI in the data path, inducing the group delay distortion which further generates RJ [25]. Thus, as suggested by our simulations, a 0.5-ps jitter is set as the separated $Line J$ between RJ and DDJ in Figs. 13 and 14, which is a relative value.

Based on (10), we consider the timing error in Fig. 11 and replace t_{q3} by $t_{q1} + t_{ae1}$, and t_{q4} by $t_{q2} + t_{ae2}$, respectively. Fig. 13 illustrates the calculated and simulated DDJs under different DE modes and covering the 6-to-14-Gb/s data rate. Plotted in Fig. 13, the calculated DDJ rises up with the simulated DDJ, whose gap is mainly due to the RJ. Compared to the purely-theoretical calculations based on (10) with the separated RJ under S1 and S2 modes in Fig. 8(b), those in Fig. 13(b) based on the complete schematic (Fig. 9) basically overlap due to the transistor-level noideal factors (i.e., noise, phase distortion and vice versa), but the latter is significantly greater than the former. Increasing the time
delay at 10 Gb/s from 0.75 to 1 UI results in a larger 2-impulse-based DDJ, as shown in Fig. 12(e), which always holds over the data rate of 6-to-14 Gb/s (Fig. 13). For a 0.75-UI DE, if the BW is extended so that there is enough time for the roll-off process, the 2-impulse-based DDJ under the 10+ Gb/s data rate may decrease below 0.5 ps. If the BW becomes narrow, the 2-impulse-based DDJ at <10-Gb/s data rate goes up beyond 0.5 ps.
We perform the simulations under different data rates and process corners to verify the robustness of the complete fractional DE TX (Fig. 9). From Fig. 14, the DDJs of 1-UI DE (S8 mode) are larger than those of sub-1-UI DE covering all data rates. Smaller RJs under S1 mode (6-to-14 Gb/s) and S4 mode (6-to-14 Gb/s) spread out, being sensitive to the process parameters. Inversely, larger DDJs under S8 mode (6-to-14 Gb/s) gather together are insensitive to the process parameters. Entering into S4 mode, RJ is below 0.5 ps at 6 Gb/s and then DDJs appears gradually as the data rate increases from 8 to 14 Gb/s. The limited BW in different data paths dominates the small increment of the DDJ (Fig. 14) at high data rates and different process corners.

V. EXPERIMENTAL RESULTS

The fractional DE TX prototyped in 65-nm CMOS uses dual supplies (1.2 and 1.5 V). The die size is just 0.0071 mm² (Fig. 15). At 10 Gb/s, 57% of the total power consumption (46 mW), is due to the CM circuitry (pre-amplifiers and output driver). The hybrid delay line and clock buffer consume other 34% and 10%, respectively. For the different fractional DE modes, the total power of the former increases from 15.54 mW (S0 mode), to 29.4 mW after turning on all taps (S15 mode).

Fig. 16 presents the testing scheme, in which Dout of the DE TX goes directly as a near-end output without the channel loss, and passes through different losses using the PCB traces (e.g., CH1 and CH2 for 10-Gb/s testing, CH3 for 6.5-Gb/s testing) as the far-end testing. Both testing cases were performed under a 2³¹-1 PRBS pattern generated by a J-BERT 4903B.
A. Near-End Testing

To clearly illustrate the tunability of the sub-1-UI DE on amplitude and time, the eye diagrams at D_{out} under tuning of 1 and 2 post-cursor taps are captured at a lower data rate of 4 Gb/s (Fig. 17), showing the fine tunability of DE by VDCTRL. The tunability has no effect on DTJ. To validate the effectiveness of the two-step DE embedded 4 post-cursor taps, we measured the data eyes (Fig. 18) at 4 Gb/s under 16 modes (S0-S15) of the sub-1-UI fractional DE. The DE variation with 2 taps (i.e., 1 main tap plus 1 post-cursor tap corresponding to 0.25, 0.5, 0.75 or 1 UI) is consistent with that depicted in Fig. 12(a). When more post-cursor taps are turned on, the DE on the magnitude increases, indicating the loss-compensation improvement.

As sub-1-UI DE can compensate more than high-frequency portion of the PRBS spectrum, the measured data rising or falling time at D_{out} shortens by 46.8% [Fig. 19(a)] when comparing our sub-1-UI DE (S1 mode) with no DE (S0 mode). Also, the resultant Pk-to-Pk jitter improves from 10.8 to 8.4 ps [Fig. 19(b)]. Importantly, the problem of the obvious 2-impulse -based DDJ of 1-UI DE can be eliminated in the proposed sub-1-UI DE between 4 to 8 Gb/s (at least being suppressed at 10 Gb/s), as shown in Fig. 20. Comparing with...
Herein, we properly tune VDCTRL to optimize the eye quality DE and sub-1-UI DE when the channel loss is small (–12 dB). (Fig. 21, left) show a similar performance between pure 1-UI the higher data rate.

The HO and VO after the channel measurement at 10 Gb/s (Fig. 21, left) show a similar performance between pure 1-UI the higher data rate.

The HO and VO after the channel measurement at 10 Gb/s (Fig. 21, left) show a similar performance between pure 1-UI the higher data rate. Additionally, we can confirm the calculated and simulated jitters in Fig. 13, the measured DTJs result from three more factors: 1) the data from the PRBS generator has a Pk-to-Pk jitter of ~5.5 ps [26], 2) the off-chip clock provided by a signal generator having a rms jitter of <300 fs, 3) the noise coupling from the supply and ground as well as the bias voltage, and 4) the delay-and-BW mismatches between the main-tap and post-cursor paths worsen the DTJ, resulting in the obvious 2-impulse-based DDJ, especially for the higher data rate.

B. Far-End Testing

The HO and VO after the channel measurement at 10 Gb/s (Fig. 21, left) show a similar performance between pure 1-UI DE and sub-1-UI DE when the channel loss is small (~12 dB). Herein, we properly tune VDCTRL to optimize the eye quality (i.e., t4 < 0.25 UI). Yet, when the channel loss increases to -20 dB, only the sub-1-UI DE can recover a HO of 0.62 UI and a VO of 19.5%, while those of 1-UI DE are completely closed. It means that the sub-1-UI DE can effectively reduce DTJ except the loss compensation. Additionally, we can confirm symmetric even and odd data eyes (Fig. 21, right). Further, all data eyes are closed when DE is off.

C. Summary and Comparison

Based on the above analysis and verification, we summarize the useful insight on the fractional DE as follows. Generally, both simulation and measurement under the S8 mode show the largest DTJ [Fig. 22(a)] and the strong DE effect at Nyquist [Fig. 22(b)]. Entering the fractional modes (S2 and S4) involving the clocked circuits, the compensation effects at different peak frequencies remain, but the DTJ reduces significantly, due to the high-frequency extension with the same DE (Fig. 23). With a small DTJ under S1 mode, the DE effect weakens. However, it only employs the tunable analog delay cell. Thus, the DE modes in “Region I” can extend the internal BW of the pre-driving stage to improve the DTJ, and we utilize the DE modes in “Region II” at the final output driver to compensate the external channel loss. Interestingly, the fractional DE can be viewed as the equivalent BW-extension technique with the occurrence of zero in (2), but is attenuated by the actual pole-induced roll-off. It results from an inverse-phase two-path combination similar to [29], but differing from the conventional AI-based or inductive BW-extension technique. We favor the flexible choice of the combination of the sub-1-UI DE modes to deliver high-quality eyes over the entire data path.

VI. Conclusions

This paper reported an area-efficient sub-1-UI fractional DE technique based on the tunable and clocked hybrid delay line to effectively compensate the channel loss and improve the jitter performance. The latter can be calculated by a closed-form expression. Fabricated in 65-nm CMOS, the 0.0071-mm² 5-tap current-mode TX employing the two-step DE obtains better data-eye opening at both near- and far-end verification, while keeping the even and odd eyes symmetric.

Appendix

This Appendix gives the calculation of two step responses, gall1(t) and gall2(t), corresponding to the minimum and maximum boundaries of DDJ shown in Fig. 7, respectively. The general step function x(t) = A0(t) – A (t) as we use the input signal for the 1st-order RC response, where u(t) is the unit step function. gRC(t) is the total step response which can be decomposed into the zero-state response gRCZS(t) and zero-input response gRCZI(t) as given by,

\[g_{RC}(t) = A_{ZS} \left(1 - e^{-\omega_0 t} \right) u(t) + A_{ZI} e^{-\omega_0 t} u(t) \] (A1)

We first find the step response gRC1(t) for x01(t) with AZI = -1 and AZS = 1, as shown in Fig. 24.

\[g_{RC1}(t) = -1 + 2(1 - e^{-\omega_0 t}) u(t) \] (A2)
By manipulating (9) and using (A2), the overall response \(g_{\text{all}}(t) \) across 3-time intervals in the case I [Fig. 7(b)] leads to,

\[
g_{\text{all}}(t) = \begin{cases}
- (a_0 - a_1), & t < 0 \\
\frac{g_1(t)}{a_0 + a_1 - 2a_0 e^{-\alpha t}}, & 0 < t < t_{d_i} T_B \\
0, & t_{d_i} T_B < t
\end{cases}
\]

To calculate \(A_1 \).

(A3)

In case II, a series bits of “….101…” as input \(x_{101}(t) \) can be divided into cascades of “10” and “01”, in which the zero occupies a period of \(T_B \). The above analysis can be repeated for the 1st-order RC step response \(g_{R\text{C2}}(t) \) for \(x_{101}(t) \) (Fig. 24), expressed by

\[
g_{R\text{C2}}(t) = 1 - 2 \left(1 - e^{-\alpha (t+t_B)} \right) u(t) + 2 \left(1 - e^{-\alpha t} \right) u(t)
\]

(A4)

By replacing (A4) into (9), the overall response \(g_{\text{all2}}(t) \) covering 5-time intervals [Fig. 7(b)] becomes,

\[
g_{\text{all2}}(t) = \begin{cases}
(a_0 - a_1), & t < -T_B \\
- (a_0 + a_1 + 2a_0 e^{-\alpha (t+T_B)}), & -T_B < t < - (1 - t_{d_i}) T_B \\
- (a_0 - a_1 + 2(a_0 - a_1 e^{-\alpha t_{d_i} T_B}) e^{-\alpha (t+T_B)}), & - (1 - t_{d_i}) T_B < t < 0 \\
0, & 0 < t < t_{d_i} T_B \\
(a_0 - a_1 - 2(a_0 - a_1 e^{-\alpha t_{d_i} T_B}) e^{-\alpha t} + e^{-\alpha t_{d_i} T_B}), & t_{d_i} T_B < t
\end{cases}
\]

(A5)

REFERENCES

Yong Chen (S’10–M’11) received the B.Eng. degree in electronic and information engineering from the Communication University of China (CUC), Beijing, China, in 2005, and the Ph.D. degree in microelectronics and solid-state electronics from the Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing, in 2010. He is currently an Assistant Professor with the State Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macao, China. His research interests include analog/mixed-signal detection and RF integrated circuits, mm-wave system and circuits, and high-speed on-chip and chip-to-chip electrical/optical Interconnects.

Pui-In Mak (S’00–M’08–SM’11–F’19) received the Ph.D. degree from the University of Macau (UM), Macau, China, in 2006. He is currently a Full Professor with the Faculty of Science and Technology—ECE, UM, and the Associate Director (Research) of the State Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macao, China. His research interests include analog/mixed-signal detection and RF integrated circuits, mm-wave system and circuits, and high-speed on-chip and chip-to-chip electrical/optical Interconnects.

Zunsong Yang received the B.E. degree in microelectronics from Qingdao University, Qingdao, China, in 2014, and the M.S. degree in electronic and communications engineering from the Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing, China, in 2017. He is currently pursuing the Ph.D. degree with the University of Macau (UM), Macao, China. His current research interests include high-speed IC circuits, specializing in the phase-locked loops and wireline transmitters.

Chirn Chye Boon (M’09–SM’10) received the B.E. (Hons.) and Ph.D. degrees in electrical engineering from Nanyang Technological University (NTU), Singapore, in 2000 and 2004, respectively. He was with Advanced RFIC, NTU, where he was a Senior Engineer. Since 2005, he has been with NTU, where he is currently an Associate Professor. He is involved in radio frequency and mm-wave circuits and systems design for biomedical and communications applications. He has conceptualized, designed, and verified 80 silicon circuits/chips for biomedical and communications applications. Since 2010, he has been the Program Director of RF and mm-wave research in the $850 million research center of excellence, VIRTUS. He has authored over 100 refereed publications in the fields of RF and mm-waves. He has authored the book Design of CMOS RF Integrated Circuits and Systems (2010).