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A 1.1 μW CMOS Smart Temperature Sensor With
an Inaccuracy of ±0.2 °C (3σ) for Clinical

Temperature Monitoring
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Abstract— In this paper, an ultra-low power, high accu-
racy CMOS smart temperature sensor customized for
clinical temperature monitoring based on substrate p-n-p
bipolar junction transistors (BJTs) is presented. A power efficient
analog front end with a sensing-range customized multi-ratio pre-
gain stage is proposed to effectively utilize the input range of the
incremental analog-to-digital converter to relax the conversion
speed and resolution requirement. A block-based data weighted
averaging technique is also proposed to achieve highly accurate
pre-gain ratios while significantly reducing the implementation
complexity. The complete temperature sensor is implemented in
a standard 0.18 μm CMOS process occupying an active area of
0.198 mm2. Measurement results from 20 test chips show that
an inaccuracy of ±0.2 °C (3σ) is achieved from 25 °C to 45 °C
after one-point calibration. The average power consumption is
1.1 μW at a conversion speed of 2 Sa/s.

Index Terms— Smart temperature sensor, ultra-low power,
high accuracy, incremental analog-to-digital converter (I-ADC),
multi-ratio pre-gain, block-based data weighted averag-
ing (BDWA).

I. INTRODUCTION

W ITH the aim of improving human healthcare,
wearable and/or implantable biomedical devices which

can provide long-term monitoring for detecting critical and
abnormal body conditions are becoming increasing popular.
Being one of the most important physiological parameters,
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temperature sensing with high accuracy is generally required
in such systems. According to [1], human body temperature
sensors should achieve an accuracy of ±0.1°C from 37 °C
to 39 °C, and ±0.2°C both below 37 °C and above 39 °C.
To achieve a prolonged operation lifetime with low cost, the
temperature sensor should preferably have ultra-low power
consumption. These stringent application specific require-
ments mandate the design of high accuracy low power smart
temperature sensors [2].

Traditional temperature sensors are generally discrete
devices such as thermistors, platinum resistors, Pt wire,
which are bulky, consume high power or incompatible with
CMOS process. Smart temperature sensors based on low-cost
standard CMOS technology are becoming more and more
popular as the sensor interface and readout electronics can
be readily fabricated in a single chip, producing a readily
interpretable temperature reading in a digital format [3]–[5].
In CMOS technology, two types of popular temperature sens-
ing devices, namely MOSFET and BJT, have been exploited
in detail. For MOSFET [2]–[4], due to the spread in gate
oxide thickness and channel doping, two-point calibration
is required to achieve a high sensing accuracy [6]. The
induced extra production cost makes it unfavorable for mass
production. BJT-based sensors are proven to be more accurate
and can achieve an inaccuracy below ±0.2 °C with only
one-point calibration [5], [7]. To achieve this level of accu-
racy, a high precision readout circuit is necessary. Due to
the one-shot operation required, incremental ADCs (I-ADCs)
together with precision techniques including dynamic element
matching (DEM) and system level chopping have been widely
used. This, however, results in relatively high power consump-
tion (in the order of few μW to tens of μW) as a high
resolution I-ADC requires much power budget which dom-
inates the sensor power consumption. For emerging applica-
tions such as passively powered wireless temperature sensing
systems focusing on ultra-low power consumption [2], [3],
MOSFET-based designs are becoming prevalent to achieve
ultra-low power consumption, with the penalty of higher
production cost as a result of increased calibration efforts to
ensure high accuracy [2].

In this work, a CMOS temperature sensor is designed with
high accuracy and ultra-low power consumption especially
suitable for passively-powered clinical temperature monitoring
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applications where the human body temperature can be readily
measured non-invasively [2]. In the targeted applications,
as only a narrow temperature sensing range is required, the
input range of the readout circuit is poorly utilized. Also,
a relatively low sampling rate is generally required that can not
only reduce the sensor power, but also relaxes the back-end
processing and wireless power. Based on these observations,
instead of using a high resolution I-ADC employing a high-
order modulator with a large integrator bandwidth as in [7],
a multi-ratio pre-gain stage is proposed to relax the resolution
requirement of the I-ADC by optimizing its input range
utilization. BDWA is also proposed to alleviate the capacitor
mismatch error while effectively relaxing the control overhead.
Our proposed temperature sensor features ultra-low power
consumption (less than 1/4.6X as compared to [7]) which is
of utmost importance in passively powered applications where
the energy storage in the remote sensing system is limited for
cost reduction. This paper is organized as follows. Section II
illustrates the operation principle of BJT-based temperature
sensors. Section III describes the proposed multi-ratio pre-gain
stage as well as the detailed analysis on the BDWA technique.
A detailed error analysis is presented in Section IV. The circuit
level implementation is illustrated in Section V. Measurement
results are shown in Section VI. Section VII ends with the
conclusions.

II. OPERATING PRINCIPLE

Due to its well-defined temperature behavior, BJT shows
high temperature accuracy and is generally utilized in
CMOS temperature sensor designs. For a BJT, the base-emitter
junction voltage (VBE) and the collector current is defined as

VB E = kT

q
ln

(
IC

IS

)
(1)

where k is the Boltzmann constant, T is the temperature
in K , q is the electron charge, and IC and IS are the collector
current and saturation current, respectively. The temperature
characteristic of VBE is mainly defined by IS , which shows a
temperature dependence defined as

Is = ABT ū p(T )n2
i (T ) (2)

where B is a constant related to the process and A is the
emitter area. The effective hole mobility ū p and the intrinsic
carrier concentration ni exhibit the following temperature
characteristics

ū p (T ) ∝ T −n (3)

n2
i ∝ T 3exp(

−qVg(T )

kT
) (4)

where Vg is the bandgap voltage of silicon, with

Vg (T ) = Vg0 − βT (5)

where Vg0 (approximately 1.2V) is the extrapolated bandgap
voltage at 0 K and β is a proportional constant. By substitut-
ing (2)-(5) into (1), the temperature dependence of VB E can
be obtained

VB E = Vg0 + kT

q
ln

(
IC

CT 4−n

)
(6)

Fig. 1. Temperature dependence of key voltages in conventional
CMOS temperature sensor designs.

where C is a constant. It can be observed that VB E shows a
complementary-to-absolute temperature (CTAT) characteristic,
with a slope of roughly −2 mV/K. High-order curvature is
introduced by the term T 4−n . By using two identical BJTs
biased with a current density ratio of 1 : p, a voltage different
between the two base-emitter junctions can be obtained, and
can be expressed as

�VB E = VB E2 − VB E1 = kT

q
ln(p) (7)

It can be observed in (7) that �VB E is process independent
and exhibits a proportional-to-absolute-temperature (PTAT)
characteristic. It should be noted that the non-ideality factor
of a BJT is very close to 1 when compared with a diode,
resulting in a better linearity in �VB E to enhance the sensing
accuracy [8]. By applying a proportional constant α to �VB E ,
the temperature dependence between �VB E and VB E can
be cancelled, resulting in a reference voltage which can be
expressed as

VRE F = VB E + α�VB E (8)

The temperature dependent voltage �VB E and the reference
voltage VRE F form the basis for CMOS temperature sensing.
Fig. 1 shows the temperature dependence of key voltages for
a BJT-based temperature sensor.

When α�VB E and VB E are readout using an I-ADC,
a ratiometric output (μ) can be obtained as defined by

μ = α�VB E

VRE F
= α�VB E

VB E + α�VB E
(9)

By using a digital filter, μ serves as a representation of the
instantaneous temperature

Dout = Aμ + B (10)

where A and B are constants with A ≈ 600 and B ≈ 273.
As shown in Fig. 2(a), the conventional design suffers from
a relatively small sensitivity in �VB E , requiring a high
resolution ADC to achieve high accuracy (e.g. 16-bit for
0.1 °C in [8]). This results in an inefficient use of the
I-ADC input range, especially in applications which require
only a small temperature sensing range (e.g. clinical tem-
perature monitoring). This paper exploits the use of multiple
pre-gain ratios to achieve high accuracy without significantly
increasing the implementation complexity.
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Fig. 2. Block diagrams of the (a) conventional and (b) proposed smart temperature sensor with multi-ratio pre-gain stage.

III. PROPOSED STRUCTURE

Fig. 2(b) shows the block diagram of the proposed smart
temperature sensor. Instead of using a fixed pre-gain stage
as in conventional temperature sensor designs, we propose
to integrate a multi-ratio pre-gain stage (k1−4) to amplify
the temperature signal while providing an offset to prevent
integrator saturation under low voltage operation. This also
relaxes the I-ADC requirement as only a moderate resolution
is required (e.g. 12-bit for 0.1°C). To achieve the required
sensing accuracy, different error sources (i.e. quantization
noise, mismatch noise, thermal noise) are designed to result
in less than 0.01°C error separately. The output bit-stream bs
is then fedback for pre-gain update as well as processed by
the off-chip digital filter to obtain the ratiometric output μ′.

A. Multi-Ratio Pre-Gain Stage

During temperature signal conversions, �Vbe and Vbe are
amplified using the multi-ratio pre-gain stage according to bs.
The gain ratios (including α and k1−4) are implemented
by the first stage integrator using capacitors to balance the
temperature coefficients of VB E and �VB E . Based on charge
balancing, the integrator is charged with gain ratios αk1, k2
when bs = 0, and discharged with gain ratios αk3, k4 when
bs = 1, respectively. The integrated charge in each case can
be expressed by

Q0 = Cint · (αk1 · �VB E − k2·VB E ) (11)

Q1 = Cint · (αk3 · �VB E − k4·VB E ) (12)

where Q0 and Q1 are the transferred charge for bs = 0 and
bs = 1, respectively, and Cint is the integration capacitor.
With large enough number of integration cycles Ntotal ,

the residue charge can be assumed to be much smaller than
the total charge and the following equation results

(Ntotal − N1) · Q0 + N1 · Q1 = 0 (13)

where N1 is the number of cycles with bs = 1. By using
(11), (12) and (13), a redefined ratiometric output

(
μ′) can be

deduced as

μ′ = k1 + k2

k1 − k3
· α�VB E

VRE F
− k2

k1 − k3
= G · μ − C (14)

where G is the gain factor and C is the offset. To ensure proper
operation, the following constraints on k1−4 should be met⎧⎪⎨

⎪⎩
k1 > k3

k4 > k2

k1 − k3 = k4 − k2

(15)

It should be noted that as k1−4 can be realized with DEM,
both G and C in (14) can achieve high accuracy. An accurate C
can also effectively ensure low voltage operation without satu-
rating the integrator while avoiding extra trimming steps. With
an application specific sensing range from 25 °C to 45 °C,
G and C can be optimized using a system model based on
Matlab to scale the conventional μ to μ′. Table I shows
the optimized pre-gain values. As illustrated in Fig. 2, our
proposed scheme extends the I-ADC input range coverage
from less than 4% to more than 60%, which can signifi-
cantly improve the power-efficiency and simplify the hardware
design.

B. Block-Based Data Weighted Averaging (BDWA)

Even though the proposed multi-ratio pre-gain stage can
better utilize the input range of the I-ADC, it also imposes
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TABLE I

PRE-GAIN VALUES AND REQUIRED UNIT CAPACITORS

Fig. 3. Implementation of BDWA control line allocations. NC , NR are the
number of columns and rows of the unit capacitor array, and B1 and B2 are
the selection block sizes, respectively.

an increase in the number of capacitors required. For the
proposed design, the worst case number of unit capacitors
happens during the integration of �VB E when bs = 0
(requiring a total number of 117 unit capacitors). Despite the
fact that conventional DEM techniques like data weighted
averaging (DWA) can achieve an accurate gain value with
the presence of capacitor mismatch, the implementation com-
plexity can lead to significant design overhead. For simplicity,
we denote the required gain ratios to be K1−4. For any arbi-
trary gain ratios (K1, K2) and (K3, K4), a total of NDW A =
max (K1 + K2,K3 + K4) unit elements with individual control
is required when applying the conventional DWA. This can
result in potential routing congestion and area inefficiency
issues that ultimately limit its use especially when a large gain
ratio is required.

To resolve this problem, BDWA is proposed to achieve
multi-ratios with high accuracy while significantly reducing
the routing cost. Fig. 3 illustrates the control resource allo-
cations for the proposed BDWA, where the key idea is to
group a maximum number of unit capacitors into blocks while
still providing the flexibility offered by the DWA. With the
two ratios (K1, K2) and (K3, K4), first their corresponding
greatest common divisor (GCD) is found. The required number
of rows NR is assigned to be the maximum of G1 and G2.

Fig. 4. BDWA implementation using the gain ratios in Table I.

The number of columns NC can then be selected as the
smallest integer which can realize the required gain ratios.
As a result, a total number of NB DW A = NR × NC unit ele-
ments are required. The BDWA algorithm results in two block
control allocations B1 and B2 to realize dynamic block-level
matching. The following observations can be drawn between
DWA and BDWA:

• If K1−4 are relatively prime to each other, BDWA and
DWA essentially result in the same control allocations.

• B1 = T × B2 where T is an integer.
• NB DW A ≥ NDW A for all possible integer gain sets.
By using the gain ratios as shown in Table I, we can assign

K1 = αk1, K2 = k2, K3 = αk3 and K4 = k4, respectively.
The corresponding values for NR , NC , B1, B2 can also be
calculated as 10, 12, 9 and 1, respectively. Fig. 4 shows the
corresponding BDWA implementation. It can be observed that
the number of control lines required is significantly reduced
to 24, which is 4.8x less than that required for the conventional
DWA.

IV. ERROR ANALYSIS

To achieve the target accuracy in the order of ±0.1°C,
every error source is limited to a level of 0.01°C. This section
describes all major error sources and the corresponding design
considerations and analysis for noise minimization.

A. Capacitor Mismatch

As described in section III-B, the increased number of unit
capacitors required in BDWA can lead to an increase in aver-
aging cycles. Also, the increased mismatch between B1 and B2
can also lead to an inferior noise performance. To better
understand the issue, a theoretical analysis of the mismatch
error is provided for an arbitrary ratio (K1, K2) to compare
the performance of the DWA and the proposed BDWA. It is
assumed that every capacitor exhibits a mismatch δi , where i
is the index of the unit capacitor within the capacitor array.

For DWA, the corresponding accumulated mismatch error
and the total number of cycles are defined as

�K j,DW A = 1

M

(
M ′ ∑NDW A

i
δi +

∑M K j,DW A−M ′ NDW A

i
δi

)

(16)

M ′ =
⌊

M K j,DW A

NDW A

⌋
(17)
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The first term in (16) represents the global mismatch error
where all the elements in the capacitor array are utilized
the same number of times, while the second term shows the
residue error. The minimum residue error (which is achieved
when the second term for both K1 and K2 is zero) and the
corresponding minimum required number of cycles can be
expressed as

�K j,DW A,min = K j,DW A

NDW A

∑NDW A

i
δi (18)

Mmin = max

(
LC M (K1, NDW A)

K1
,

LC M (K2, NDW A)

K2

)
(19)

where LC M(.) is the least common multiple function.
As every DEM algorithm will ultimately converge to the
minimum residue error with large enough cycles, it will be
used for performance comparison between DWA and BDWA.

For BDWA, it is defined first that the fundamental selection
block B f for selecting B1 and B2. As shown in Fig. 3, the
possible selections for B f = {

NC,i
}

or
{

B1,i , T · B2,i
}
, i.e. the

selection of an entire column or a subset of B1 and B2. Without
loss of generality, it is assumed K1≥K2 and B f should include
K2 unit capacitors in a particular cycle. K1 can then be realized
using integer multiples of B f . The block mismatch error δB f, j

in each fundamental block B f, j is expressed as

δB f, j =
∑B f

i
δ j,i (20)

for all the unit elements in block B f, j .
In the case of B f = {

NC,i
}
, the accumulated mismatch

error for N number of cycles is

�K j,B DW A = 1

N

(
N ′ ∑NB DW A

i
δi

+
∑ N K j,B DW A −N ′ NB DW A

NR

i
δB f ,i

)
(21)

where

N ′ =
⌊

N K j,B DW A

NB DW A

⌋
(22)

The minimum error and the corresponding minimum required
number of cycles are

�K j,B DW A,min = K j,B DW A

NB DW A

∑NB DW A

i
δi (23)

Nmin = NC (24)

Notice that (18) and (23) are similar as NB DW A is an integer
multiple of K1 + K2, except that Nmin ≥ Mmin . As a result,
BDWA and DWA should achieve a similar performance.

For B f = {
B1,i , T · B2,i

}
, if B1,i is an integer multiple of

T · B2,i , NB DW A is also an integer multiple of K1 + K2. This
is essentially the same as the case for B f = {

NC,i
}
, and

(21)-(23) are still applicable. The corresponding minimum
number of cycles to achieve the minimum accumulated
error is

Nmin = NC + NC · (NR − B1)

B1
(25)

If B1,i is not an integer multiple of T · B2,i , not all the
unit elements in the capacitor array can be evenly utilized
during the averaging process, resulting in a residue error. The
accumulated mismatch in this case is

�K j,B DW A = 1

N

(
N ′′ ∑NB DW A

i
δi − NB1

∑NB1

i
δB f 1,i

− NB2

∑NB2

i
δB f 2,i −

∑NE

i
δB f 2,i

)

(26)

where

N ′′ =
⌈

N K j,B DW A

NB DW A

⌉
(27)

NE = NC · (NR − B1) − B1 ·
⌊

NC · (NR − B1)

B1

⌋
(28)

with NB1 and NB2 denoting the number of B f 1 and B f 2
blocks that are not utilized for completely using up all the
NB DW A capacitors in the averaging process. The exact value
for NB1 and NB2 depends on how different blocks are selected.
However, the minimum accumulated error occurs when
NB1 = NB2 = 0, and can be readily expressed as

�K j,B DW A = 1

N

(
N ′′ ∑NB DW A

i
δi −

∑NE

i
δB f 2,i

)
(29)

where

Nmin = N1 · (NC + 1) (30)

N1 = LC M (NC · (NR − B1) , B1)

B1
(31)

It should be noted that NE depends on the actual ratios
to be realized. However, this error should be negligible for
NE � NB DW A, which is valid when the required ratio is
large. Also, the error associated to each gain should cancel
out each other as only a ratio is required. The theoretical
accumulated mismatch error defined in (18), (21), (23), (26)
and (29) are utilized to estimate the corresponding ratio error
using simulation. Fig. 5 shows the simulated performance
comparison between DWA and BDWA with K1−4 equal to
108, 9, 90 and 10, respectively, assuming a capacitor mismatch
of 1% and 4%. The capacitor array size for the DWA is 117
while that for the BDWA is 120 (NR = 1 0 and NC = 12).
B1 and B2 are set to 9 and 1, respectively. Table II summarizes
the performance comparison between the DWA and the pro-
posed BDWA. For BDWA, the error for K1/K2 and K3/K4 are
attenuated to the minimum level after 52 cycles and 12 cycles,
respectively. Moreover, the achieved error level for K3/K4 is
very close to that achieved by DWA. For K1/K2, even though
each gain exhibits a residue error as shown in (28), that is
canceled to the first order as expected since only a ratio is
required, resulting in a similar performance in the DWA. This
clearly demonstrates the practicality of BDWA for high gain
ratio implementations. It can also be observed in Fig. 5 that
the ratio error quickly converges to a level which is well below
the required 74 d B to achieve 12-bit resolution even with a
mismatch error as large as 4%. Also, the increase in mismatch
due to routing parasitic in the BDWA should limit its minimum
mismatch error.
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Fig. 5. Performance comparison of DWA and BDWA for (a) K1/K2 =
108/9; and (b) K3/K4 = 90/10. The black and blue bold lines illustrate the
convergence trend with a capacitor mismatch of 1% and 4%, respectively.

TABLE II

PERFORMANCE COMPARISON BETWEEN DWA AND BDWA

B. Quantization and Finite Gain Error

To achieve the target accuracy, the quantization level is set
to 0.01°C. The proposed multi-ratio pre-gain stage achieves
this level of accuracy with only a 12-bit ADC (instead
of 16-bit in the conventional design) which can significantly
reduce the ADC design complexity.

For the integrator, the Opamp finite DC gain can result in
integrator leakage which can cause the modulator to generate

a periodic sequence of bs with a range of input called the
“dead zone”. The effect-number-of-bit (ENOB) of the ADC is
determined by the width of the largest dead zone, and the
width of dead zone (�μ) can be expressed by [10]

�μ = 1 − p

1 + p
≈ a

2A0
(32)

where a is the close-loop gain, A0 is the Opamp DC gain and
p = 1 − a

/
A0 is the leakage gain. �μ should be smaller

than 0.5LSB to achieve the resolution requirement. Based
on simulation results, this effect becomes insignificant when
the Opamp DC gain is larger than 77 dB. This significantly
relaxed DC gain requirement allows the utilization of a simple
integrator implementation based on a two-stage amplifier with
miller compensation, improving the power efficiency.

C. Settling Time and Thermal Noise

In ultra-low power applications, the settling condition of
the sample-and-hold circuit is dominated by the frontend bias
current Ibias for charging the sampling capacitor. If a half-
clock sampling period is available for settling, the error due
to incomplete settling can be evaluated as [11]

∑M

i=1
Cs,i ≤ 1

2 kT
q f

clk

[
− Ib

ln (ε)

]
(33)

where Cs is the unit capacitor, M is the maximum num-
ber of sampling capacitors (the sampling capacitor number
varies alternately according to bs = 0 or 1), fclk is the
sampling clock and ε is the relative inaccuracy. In this work,
Ib = 25n A and fclk = 8k H z. As a result, the corresponding
maximum sampling capacitance should be roughly 8pF. When
compared with the thermal noise n̄2 = 4kT

/
(N · Cs) (N is the

number of cycles in one temperature conversion), the estimated
minimum unit capacitance is 0.8fF, which implies that the
thermal noise is relatively insignificant in this design.

V. CIRCUIT IMPLEMENTATION

Fig. 6 shows the simplified schematic of the complete
temperature sensor implementation. It is composed of an
analog frontend followed by a first-order I-ADC. The analog
frontend consists of a bias current generator and a bipolar
core. The bias current Ibias is PTAT to enhance the linear-
ity of VB E and VRE F , improving the sensing accuracy [5].
In order to achieve ultra-low power consumption while ful-
filling the sensing accuracy and readout speed requirements,
the values for Ibias , Ib and R are designed to be 8.3 nA,
25 nA and 6.5 M�, respectively. The Opamp is adaptive
self-biased [12] and draws only 85 nA at 37°C from a
1V supply. Two VB E signals (VB E1 and VB E2) are derived
using 6 identical current branches from the bias current
generator with DEM to minimize the mismatch error, with
Ib = 25n A for complete VB E settling using a sampling clock
fclk of 8 kHz. To enhance the output impedance and mirror
the current to the branches more accurately, cascading has
been used. As the targeted temperature sensing range is from
25 °C to 45 °C, the corresponding VB E is expected to be
close to 620 to 500 mV, respectively. As a result, a supply
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Fig. 6. The proposed smart temperature sensor simplified architecture.

Fig. 7. Simplified schematic of the (a) operational amplifier (integrator) and
(b) latched comparator.

voltage of 1 V for the analog blocks would suffice for proper
circuit operations. The proposed multi-ratio pre-gain stage
is implemented using a fully differential integrator, and a
unit capacitor array of 120 elements, with Cunit = 28 f F
and Cint = 40Cunit . The capacitor blocks CB1,i and CB2,i

are designed according to the proposed BDWA algorithm
described in section III-B. By using the proposed multi-
ratio pre-gain stage and BDWA technique, the specification
of the I-ADC can be greatly relaxed. Fig. 7(a) shows the
implemented miller-compensated two-stage amplifier with bias
voltages generated using Ibias (common-mode feedback not
shown). The corresponding GBW, DC gain and phase margin
are 240 kHz, 84 dB and 74°, respectively, while drawing
only 520 nA at 37 °C. A latched comparator for determining
the polarity of the quantization error is shown in Fig. 7(b).
A pre-amplifier is utilized to reduce the kickback noise and
achieve the required temperature resolution. The mismatch

Fig. 8. Timing diagram of one typical charging/discharging cycle.

of the sampling capacitors is averaged by BDWA, while
the remaining offsets from the Opamp and comparator are
minimized using system level chopping. Various noise sources
are minimized to achieve the target accuracy according to
section IV. Simulation results show that the analog frontend,
I-ADC and the control logic consume 0.27 μW, 0.57 μW and
0.25 μW, respectively.

Fig. 8 shows the waveform of the half-circuit conversion
process. In φ1, VB E2 is sampled from terminal Vin1− while
Vin2− is connected to ground. In φ2, VB E1 is sampled from
terminal Vin1− and terminal Vin2− is utilized to sample VB E2.
The stored VB E2 and �VB E are then amplified using the
multi-ratio pre-gain stage, and a charge package proportional
to (αk1�VB E − k2VB E ) is integrated in the charging phase.
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TABLE III

PERFORMANCE COMPARISON WITH STATE OF THE ART

Fig. 9. Chip micrograph of the proposed smart sensor.

Similarly, (k4VB E − αk3�VB E ) is integrated in the discharg-
ing phase. The output of the integrator is then fed to the input
of the comparator for bs evaluation. The output bs is then
processed to obtain the instantaneous temperature. One-point
digital calibration is exploited to tackle the variation VB E due
to BJT process spread.

VI. MEASUREMENT RESULTS

This proposed smart temperature sensor is implemented in
a standard 0.18μm CMOS process, occupying an active area
of 0.198 mm2. Fig. 9 shows the die microphotograph. With
the analog and digital supply set to 1V and 1.8V respectively,
the sensor dissipates a measured power of 1.1μW (0.9 μW
from 1 V supply and 0.2μW from 1.8 V supply) at 37 °C
with a conversion rate of 2 Sa/s.

Fig. 10 shows the measurement setup. The device under
test (DUT) is characterized using a thermal chamber (SU-261,
ESPEC). During measurement, the DUT is placed next to a
reference sensor (platinum Pt-100 resistor) inside a metal box
which serves as a thermal low-pass filter. The Agilent Modular
Logic Analyzer System 16902B is employed for input pattern
generation as well as to monitor and analyze the temperature
data, which is directly compared with the reading from the
thermal meter (Tempmaster PRO) the processor outputs. Both
the reference sensor and thermal meter are calibrated to
achieve a ±0.05 °C accuracy. Power consumption is measured
using Agilent 3458A. The sensor is calibrated at 37 °C with
the sensing error estimated using a linear master curve.

Fig. 10. Illustrative diagram of the measurement setup.

Fig. 11. Measured inaccuracy from 20 chips samples after one-point
calibration at 37 °C. Bold dashed lines indicate the ±3σ values, while blue
solid lines show the accuracy requirement from [1].

Fig. 11 shows the measured temperature error from 25 °C
to 45 °C using 20 sample chips after one-point calibration
at 37 °C. It can be observed that an inaccuracy of ±0.1 °C(3σ)
is obtained from 37 °C to 39 °C (±0.2 °C from 25 °C
to 45 °C). The maximum error tolerance for human body
temperature monitoring [1] is also indicated (blue bold line).
It can be concluded that the temperature sensor achieves an
accuracy which is well within the specification, making it
suitable for human body temperature monitoring applications.
Table III shows the performance comparison of our proposed
temperature sensor with the state of the art. The proposed
work achieves high accuracy using only one-point calibration.
The application specific sampling rate is designed to not
only reduce the sensor power, but also relax the back-end
processing and wireless power. When compared with [2]
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which requires two-point calibration for each of the 3 mea-
sured samples, the proposed temperature sensor achieves high
sensing accuracy (3σ) from 20 measured chip samples while
using only one-point calibration.

VII. CONCLUSIONS

This paper has presented an ultra-low power, high accuracy
CMOS smart temperature sensor based on substrate BJT and a
first-order I-ADC with a multi-ratio pre-gain stage and BDWA
to relax the ADC resolution requirement and the routing
complexity. An inaccuracy of ±0.2°C (3σ) is achieved after
one-point calibration at normal human body temperature while
the power consumption is only 1.1μW, which is suitable for
passive temperature sensing systems of clinical temperature
monitoring applications.
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