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Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time
communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and
models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool
to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining
unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about
the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not
cause confusions.

1. Introduction

We use the term cyber-physical networking systems (CPNS)
instead of cyber-physical systems (CPS) as that in Song
et al. [1] for the meaning of Internet of Things (IoT) that
was stated by Commission of the European Communities [2]
or Networks of Things (NoT) as discussed by Ferscha et al.
[3], intending to emphasize the point that we are interested
in the networking theory in CPS. Communication networks
in CPNS include, but are never limited to, the Internet.
Physical systems considered in CPNS are heterogeneous,
ranging from telemedicine systems to geophysical ones, see,
for example, Clifton et al. [4], Traynor [5], Chang [6]. Obvi-
ously, data in various physical systems are heterogeneous, see,
for example, Chang [6], Goodchild [7], Lai and Xing [8],
Mandelbrot [9–11], Hainaut and Devolder [12], Cattani [13–
17], Chen et al. [18–22], Mikhael and Yang [23], Bakhoum
and Toma [24–26], Li [27–32], Li et al. [33–39], Messina et al.
[40], Humi [41], Dong [42], Liu [43], Toma [44], Abuzeid et
al. [45], [46–49], Werner [50], and West [51], just naming a
few.

There are two challenge issues in CPNS. On the one
hand, data models that are irrelevant of statistics of a random
function x(t) are greatly desired. On the other hand, theory
that may be used to linearize nonlinear data transmission
systems but irrelevant of their nonlinearity is particularly

expected, because communication systems, including the
Internet, are, in nature, nonlinear due to queuing, see,
for example, Akimaru and Kawashima [52], Yue et al.
[53], Gibson [54], Cooper [55], Pitts and Schormans [56],
McDysan [57], and Stalling [58]. In short, we are interested
in data models that are irrelevant of their statistics and system
theory that is irrelevant of the nonlinearity of systems.

The early work regarding the above in italic may refer to
Cruz [59–61], Zhao and Ramamritham [62], Raha et al. [63],
Chang [64, 65], Boudec [66], Boudec and Patrick [67], Firoiu
et al. [68], and Agrawal et al. [69]. Following Cruz [59, 60],
the theory for the above in italic is called network calculus,
see, for example, [66, 67], Jiang and Liu [70]. Chang [71]
uses the term (σ , ρ) calculus, which is taken as the synonym
of network calculus of Cruz in this paper.

The main application area of network calculus is con-
ventionally to computer science, the Internet in particular,
see, for example, Wang et al. [72, 73], Li and Zhao [74, 75],
Fidler [76], Jiang [77], Jiang et al. [78], Liu et al. [79], Li
et al. [80], Li and Kinghtly [81], Burchard et al. [82], Ng et al.
[83], Raha et al. [84, 85], Starobinski and Sidi [86], Fukś et al.
[87], Jia et al. [88], Golestani [89], and Lenzini et al. [90].
However, we have to emphasize the point that its applications
are never limited to computer science. Rather, it is a theory to
model data irrelevant of their statistics and to deal with data
transmission without the necessity in principle to consider
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the nonlinearity of transmission systems, as we shall explain
in the next section. Therefore, it may be a promising tool to
deal with data and systems in CPNS.

Basically, the fundamental theory of network calculus
consists of three parts as described below.

(i) (σ , ρ) model of arrival data x(t),

(ii) relationship between x(t), single system (or node or
server) S(t) that is usually called service curve, and
departure data y(t),

(iii) departure data y(t) of a series of systems (nodes or
servers) Sn(t) (n = 1, 2, . . .), driven by arrival data
x(t),

where min-plus algebra plays a role, see, for example, [66, 67,
70, 71, 76].

The contributions of this paper are in the following three
aspects:

(i) the problem statement,

(ii) the proof of the existence of the identity in the min-
plus algebra in the domain of generalized functions,

(iii) the asymptotic expression of the identity.

The rest of paper is organized as follows. Research
background is discussed in Section 2. In Section 3, we will
brief the min-plus algebra and state the problem regarding
the identity in this algebra system. In Section 4, we shall
address the existence of the identity in the min-plus algebra.
The asymptotic expression of the identity is presented
in Section 5. Discussions are given in Section 6, which is
followed by conclusions.

2. Research Background

Data in CPNS are heterogeneous. They may be from sensors
like radio-frequency identification (RFID), see, for example,
[91], Ilie-Zudor et al. [92], Ahuja and Potti [93], data traffic
in the Internet [38], transportation traffic (see [94–98]),
ocean waves (see [31]), sea level (see [36, 99]), medical
signals (see [14]), hydrological data (see [100]), financial
data (see [101]), and so on. They may be Gaussian (see
[29, 31]) or non-Gaussian (see [12, 102]). They may be in
fractional order or integer order. In the case of fractional
order, they may be unifractal or multifractal. The sample
size of data of interest may be long enough for statistical
analysis or very short, for example, a short conversation
in mobile phone networks. On the other side, systems
are also heterogeneous. Therefore, CPNS challenges us two
tough issues. One is in data modeling and the other system
modeling. We shall exhibit that the min-plus algebra in
network calculus may yet serve as a tool in this regard.

2.1. Network Model. We first explain a single node in CPNS.
Then, a model of tandem network is mentioned.

2.1.1. Nonlinearity of Node in CPNS. Denote by N a node in
CPNS, see Figure 1. Suppose there are m clients arriving at

...
...

N

x1(t)

x2(t)

xm(t)

y1(t)

y2(t)

ym(t)

Figure 1: Single node in CPNS.

the input of N at time t, see, for example, Starobinski et al.
[103].

Without confusions, we use N to represent the operator
of node N such that

yi(t) = Nxi(t), 1 ≤ i ≤ m. (1)

Recall that queuing is a phenomenon often occurring in
CPNS. For instance, cars in highways are often queued.
Clients in a library for borrowing or returning books need
queuing. Suppose client xi(t) suffers from delay di(t). Then,

yi(t) = xi(t + di(t)), 1 ≤ i ≤ m. (2)

Note that di(t) is a random variable in two senses. One is

di(t) /=dj(t), 1 ≤ i ≤ m, 1 ≤ j ≤ m, i /= j. (3)

The other is

di(t1) /=di(t2), 1 ≤ i ≤ m, t1 /= t2. (4)

Therefore, we have the following remark.

Remark 1 (nonlinearity). A node N in CPNS is usually
nonlinear. That is,

∑
yi(t) /=

∑
Nxi(t), 1 ≤ i ≤ m. (5)

2.1.2. Number of Arrivals is Random. The number of arrivals,
denoted by m in Figure 1, is random.

Note 1. We need theory to deal with a nonlinear nodeN with
m arrival clients, where m is a random variable.

2.1.3. Tandem Network Model. A single node previously
described is not enough in CPNS since a client may be served
by a series of n nodes, which we call tandem network, see
Figure 2.

According to Remark 1, each node in Figure 2 is non-
linear. In addition, considering Note 1, we see that the
number of arrival clients at the input of each node is
random. Some clients may go through from N1 to Nn while
others may not. For instance, client x1i1(t) leaves the tandem
network when it passes through N1. Further more, some
clients, for example, x21(t), arrive at this tandem network
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Figure 2: Tandem network.

at the input of N2. In general, how many clients leave the
tandem network at the output of a specific node and how
many clients arrive at the input of another specific node are
uncertain.

Note 2. We need theory to handle a nonlinear system that is
a tandem network as that in Figure 2 to assure the quality of
service (QoS) of a specific client or of a specific class of clients
within a given period of time.

The above Note 1 and Note 2 propose two challenge tasks
in system theory. We shall explain how min-plus algebra is
capable of dealing with those tasks late.

2.2. Data Modeling. We consider two classes of data flow.
One is arrival data in the aggregated case, or aggregated
clients, and the other arrival data of a specific client. In
terms of network communications, the former is usually
called aggregated arrival traffic while later arrival traffic at
connection level. Without confusions, we use the term traffic
rather than client.

One of radical properties of arrival traffic (traffic for
short) is remarked below.

Remark 2 (positive). Traffic xi(t) is positive. That is,

xi(t) ≥ 0, t ∈ R, (6)

where R is the set of real numbers.

Another radical property of traffic is that the maximum
of xi(t) is finite. More precisely, the value of xi(t) may never
be infinite. Thus, we have the following remark.

Remark 3 (finite range). The maximum of xi(t) is finite. That
is,

0 ≤ xi(t) ≤ xi,max. (7)

Remark 4 (randomness). The function xi(t) is usually ran-
dom. This implies that

xi(t1) /= xi(t2) for t1 /= t2. (8)

2.2.1. Traffic at Connection Level. At connection level, for
instance, for the ith connection, traffic is xi(t). One partic-
ularity of xi(t) is that t for xi(t) usually lasts within a finite
time interval, say, [0,T]. The width of the interval may be

short, such as a short conversation like a word “hello” or
long, such as a long speech over a network. In any case, it
is finite. Modeling xi(t) with short interval is particularly
desired and challenging.

Note 3. In the discrete case, the length of xi(t) may be too
short to the proper statistical analysis of xi(t) in practice.

Note 4. Without confusions, we use [0,T] to represent the
interval in both the continuous case and the discrete one.
In the continuous case, [0,T] ∈ R. In the discrete case,
[0,T] ∈ Z, where Z is the set of integer numbers, implying
t = 0, 1, . . . ,T . We use [t1, t2] to represent an interval the
starting point of which is nonzero.

2.2.2. Aggregated Traffic. We adopt Figure 1 to discuss aggre-
gated traffic. At time t, aggregated traffic denoted by x(t) at a
node is expressed by

x(t) =
∑
xi(t), i = 1, . . . ,m. (9)

In contrary to xi(t), the particularity of x(t) is that t for
x(t) usually lasts within an interval longer than that of xi(t).
As a matter of fact, if xi(t) passes through a node, another
arrival flow xj(t) ( j = 1, . . . ,m) may arrive at the node.
Consequently, in general, we should consider t ∈ (0,∞) for
x(t).

2.3. Accumulated Traffic. Traffic, either xi(t) or x(t), dis-
cussed previously is instantaneous one. Data modeling of
instantaneous traffic is essential, as we need understanding
what its behaviors are at instantaneous time t at the input
of a node. However, from the point of view of the service of
a node, we also need data modeling of accumulated traffic
within a time interval, say, [0,T], without loss of generality,
because it is desired for us to understand what the service
performance of the node is for the purpose of proper design
of a buffer size as well as scheduling policy of the node.

2.3.1. Accumulated Traffic at Connection Level. In the contin-
uous case, the accumulated traffic of xi(t) within the interval
[0,T] is denoted by Xi(T). It is given by

Xi(T) =
∫ T

0
xi(t)dt, t ∈ R. (10)
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In the discrete case,

Xi(T) =
T−1∑

t=0

xi(t), t ∈ Z. (11)

2.3.2. Accumulated Traffic in the Aggregated Case. Denote by
X(T) the accumulated traffic in the aggregated case within
the interval [0,T]. Then, in the continuous case, we have

X(T) =
∫ T

0
x(t)dt, t ∈ R. (12)

In the discrete case,

X(T) =
T−1∑

t=0

x(t), t ∈ Z. (13)

The mathematical expressions of X(T) and Xi(T) appear
similar except the subscript i. However, X(T) differs from
Xi(T) substantially in analysis in methodology. On the one
hand, T for Xi(T) should be assumed to be short such
that conventional methods in statistics fail to its statistical
analysis. On the other hand, T for X(T) may be large enough
such that it may be sectioned for the statistical analysis, see,
for example, Li et al. [104].

2.3.3. A Basic Property of Accumulated Traffic. One property
of accumulated traffic, eitherX(T) orXi(T), is the wide sense
increasing. By wide sense increasing, we mean that

Xi(T1) ≤ Xi(T2) for T1 ≤ T2, (14)

or

X(T1) ≤ X(T2) for T1 ≤ T2. (15)

Therefore, the data functions or series we face with are
increasing ones in the wide sense.

2.3.4. (σ , ρ) Model of Data. For σ ≥ 0 and ρ ≥ 0, the
following is called the (σ , ρ) model of data xi(t),

Xi(T) =
∫ T

0
xi(u)du ≤ σi + ρiT. (16)

Note 5. The model expressed by (16) is irrelevant of any
information of statistics of xi(t). The advantage of this model
is at the cost of using inequality instead of equality.

Note 6. The model of (16) is simple in computation. Thus, it
may be effective in practice, particularly in environments of
CPNS, where simple computations are always expected.

For accumulated traffic X(T), we have

X(T) =
∫ T

0
x(u)du ≤ σ + ρT. (17)

Due to sufficiently large T , we may set the starting time by
T0. In this case, we have

∫ T

T0

x(u)du ≤ σ(T0) + ρ(T − T0). (18)

Moreover, we are allowed to section the above integral such
that

∫ (n+1)T

nT
x(u)du ≤ σ(nT) + ρ(T), n = 0, 1, . . . . (19)

Without loss of generality, we use (17) to explain σ and ρ.

Remark 5. The parameter σ represents the bound of the
burstness or local irregularity of x(t), because

0 ≤ lim
T→ 0

∫ T

0
x(u)du ≤ σ. (20)

Note that the above integral does not make sense if
limT→ 0

∫ T
0 x(t)dt /= 0 for the continuous x(t) even in the

field of the Lebesgue’s integrals, see Dudley [105], Bartle
and Sherbert [106], and Trench [107] for the contents of
the Lebesgue’s integrals. However, it makes sense when it is
considered in the domain of generalized functions, which we
shall brief in the following section. A simple way to explain
(20) is

lim
T→ 0

∫ T

0
x(t)dt =

∫ T

0
σ1δ(t)dt, (21)

where σ1 ≤ σ and δ(t) is the Dirac-δ function.

Remark 6. The parameter ρ represents the bound of the
average rate of X(T), because

0 ≤ lim
T→∞

∫ T
0 x(t)dt
T

≤ ρ = constant. (22)

Remark 7. The parameter σ measures the local property of
x(t) while ρ is a measure of global property of x(t).

3. Min-Plus Algebra and Problem Statement

Min-plus convolution is essential in the min-plus algebra.
In this section, we first briefly review the conventional
convolution in linear systems. Then, we shall visit min-plus
convolution. Finally, we shall state the problem in the aspect
of identity in the min-plus algebra.

3.1. Conventional Convolution. Denote by p a real number
that satisfies 1 ≤ p < ∞. If a function f (t) defined on [a, b],
where a is allowed to be −∞ and b is allowed to be ∞, is
measurable and

∫ b

a

∣∣ f (u)
∣∣pdu <∞, (23)

we say that f (t) ∈ Lp(a, b).
Suppose that two functions f1(t), f2(t) ∈ L1(−∞,∞).

Then, one says that f1(t) convolutes f2(t) if

f1(t)∗ f2(t) =
∫∞

−∞
f1(u) f2(t − u)du, (24)

where ∗ is the symbol implying the operation of convolu-
tion. We call it conventional convolution so as to distinguish
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it from the min-plus convolution we are discussing in this
paper.

The conventional convolution is crucial for linear sys-
tems, see, for example, Gibson [54], Box et al. [108], Mitra
and Kaiser [109], Papoulis [110], Harris [111], Mikusinski
[112], Fuller [113], and Bendat and Piersol [114], just
naming a few. It has the properties described by the following
lemmas.

Lemma 1. In the algebra system (L1;∗), the conventional
convolution is commutative.

Lemma 2 (closure of ∗). If f1(t), f2(t) ∈ L1, then f1(t) ∗
f2(t) ∈ L1.

Lemma 3. In the algebra system (L1; +,∗), where + implies
the ordinary addition, ∗ with respect to + is distributive.

Lemma 4. For a ∈ R, [a f1(t)] ∗ f2(t) = f1(t) ∗ [a f2(t)] =
a[ f1(t)∗ f2(t)].

Lemma 5. The identity in (L1;∗) is the Dirac-δ function δ(t)
that is defined by

f (t) =
∫∞

−∞
f (u)δ(t − u)du, (25)

where f (t) ∈ L1(−∞,∞) is continuous at t.

In fact, in the domain of generalized functions, we have
∫∞

−∞
δ(u)du <∞. (26)

Thus, δ(t) ∈ L1(−∞,∞) in the sense of generalize functions.
Consequently, δ(t) is taken as the asymptotic identity in
(L1;∗) in the domain of generalized functions. Accordingly,
the inverse of the conventional convolution discussed by,
for instance, Mikusinski [112], Bracewell [115], Huang and
Qiu [116], Abutaleb et al. [117], Rhoads and Ekstrom [118],
Todoeschuck and Jensen [119], and Moreau et al. [120],
exists because the necessary and sufficient condition that the
inverse of an operation exists is that there exists the identity
in that system, see, for example, Korn and Korn [121], Zhang
[122], Riley et al. [123], Bronshtein et al. [124], and Stillwell
[125], but it should be in the sense of generalized functions.
As a matter of fact, the conventional convolution itself is in
that sense, see, for example, Smith [126].

Theorem 1. The algebra system (L1;∗) is a group.

Proof. First, the operation ∗ is closed in L1. Second,
∗ is commutative because, for any f1(t), f2(t), f3(t) ∈
L1(−∞,∞),

f1(t)∗ [ f2(t)∗ f3(t)
] = [ f1(t)∗ f2(t)

]∗ f3(t). (27)

Finally, there exists the left identity denoted by δ(t) and
the right one again denoted by δ(t) in (L1;∗) such that

f (t)∗ δ(t) = δ(t)∗ f (t) for any f (t) ∈ L1(−∞,∞).
(28)

Thus, (L1;∗) is a group.

3.2. Min-Plus Convolution. Considering the property of
wide sense increasing of accumulated traffic mentioned in
Section 2.3, we denote by S the set that contains all functions
that are greater than or equal to zero and that are wide sense
increasing.

Definition 1. Let X1(t),X2(t) ∈ S. Then, the following
operation is called min-plus convolution:

X1(t)⊗ X2(t) = inf
0≤u≤t

{X1(u) + X2(t − u)}, (29)

where ⊗ represents the operation of the min-plus convolu-
tion.

Example 1. Let X(t) = t2 for t > 0 and 0 elsewhere. Then,
X(t)⊗ X(t) = t2/2.

Lemma 6 (closure of ⊗). Let X1(t),X2(t) ∈ S. Then, X1(t)⊗
X2(t) ∈ S.

Lemma 7. The operation ⊗ is commutative. That is,

X1(t)⊗ X2(t) = X2(t)⊗ X1(t) for X1(t),X2(t) ∈ S.
(30)

Define another operation that is denoted by ∧ such that

X1(t)∧ X2(t) = inf[X1(t),X2(t)] for X1(t),X2(t) ∈ S.
(31)

Then, we have an algebra system denoted by (S,∧,⊗)
that follows the distributive law.

Lemma 8. The operation ⊗ with respect to ∧ is distributive.
That is, for X1(t),X2(t),X3(t) ∈ S, one has

[X1(t)∧ X2(t)]⊗ X3(t) = [X1(t)⊗ X3(t)]∧ [X2(t)⊗ X3(t)].
(32)

The following rule useful in this research is stated as
follows.

Lemma 9. Suppose K ∈ R. Then, for X1(t),X2(t) ∈ S, one
has

[X1(t) + K]⊗ X2(t) = X1(t)⊗ X2(t) + K , (33)

where + is the ordinary addition.

Denote by I1(t) the conventional identity in the min-plus
algebra, which is defined by

I1(t) =
⎧
⎨
⎩
∞, t > 0,

0, t < 0,
(34)

see [66–70].
It seems quite obvious when one takes I1(t) as the identity

in the min-plus algebra since

X(t)⊗ I1(t) = I1(t)⊗ X(t) = X(t). (35)

However, we shall soon point the contradictions of I1(t)
below.
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3.3. Problem Statement. Denote by u(t) the Heavyside unit
step function. That is,

u(t) =
⎧
⎨
⎩

1, t > 0,

0, t < 0.
(36)

Then, for K ∈ R, we have

Ku(t) =
⎧
⎨
⎩
K , t > 0,

0, t < 0.
(37)

Using (34), we have

I1(t) + Ku(t) =
⎧
⎨
⎩
∞ + K , t > 0

0, t < 0

=
⎧
⎨
⎩
∞, t > 0

0, t < 0

= I1(t).

(Contradiction 1)

(38)

The above is an obvious contradiction regarding the conven-
tional identity defined by (34).

In addition to the above contradiction, we now state
another problem regarding (34). As a matter of fact, if we
let X1(t) = I1(t) and Ku(t) in Lemma 9, then, on the left side
of (33) in Lemma 9, we have

[I1(t) + Ku(t)]⊗ X2(t) = I1(t)⊗ X2(t) = X2(t). (39)

On the other side, on the right side of (33) in Lemma 9, we
have

[I1(t) + Ku(t)]⊗ X2(t) = I1(t)⊗ X2(t) + Ku(t)

= X2(t) + Ku(t).
(40)

Comparing the right sides of (39) with that of (40) yields
another contradiction expressed by

X2(t) = X2(t) + Ku(t), (Contradiction 2) (41)

The above discussions imply that the definition of the
identity of (34) in the min-plus algebra, which is commonly
used in literature, see, for example, [66–70], may not be
rigorous at least. Therefore, the conventional representation
of the identity, that is, (34), may be inappropriate since
it may mislead computation results like those in (39) and
(40). Consequently, rigorous definition of the identity needs
studying.

4. Existence of Identity in Min-Plus Algebra

The problems regarding the definition of the conventional
identity, which we stated in Section 3.3, give rise to a question
whether or not the identity in the min-plus algebra exists.
The answer to this question is rarely seen, to the best of
our knowledge. Another question resulted from Section 3.3
is what the rigorous representation of the identity is. We shall
provide the answer to the first question in this section. The
answer to the second will be explained in the next section.

4.1. Preliminaries. We brief some results in generalized
functions [127–129] for the purpose of discussing the
existence of identity.

Definition 2. Let supp( f ) be the support of a function f :
R → C. It implies {t : f (t) /= 0}. The function is said to have
a bounded support if there exist a, b ∈ R such that supp( f ) ⊂
[a, b].

Definition 3. A function f : R → C is said to have n
time continuous derivatives if its first n derivatives exist and
are continuous. If its derivatives of all orders exist and are
continuous, f is said to be infinitely differentiable. In this
case, f is said to be smooth.

Definition 4. A test function is a smooth R → C with
supp( f ) ⊂ [a, b]. The set of all test functions is denoted by
D.

Definition 5. A linear functional f on D is a map f : D → C
such that, for a, b ∈ C and φ,ψ ∈ D, f (aφ + bψ) = a f (φ) +
b f (ψ).

Definition 6. Denote by (φn) a sequence of test functions and
Φ another test function. We say that φn → Φ if the following
holds:

(1) there is an interval [a, b] that contains supp(Φ) and
supp(φn) for all n,

(2) limn→∞φ
(k)
n (t) → Φ(k)(t) uniformly for t ∈ [a, b].

Definition 7. A functional f on D is continuous if it maps
every convergent sequence in D into a convergent sequence
in C. A continuous linear functional f on D is termed a
generalized function. It is often called a distribution in the
sense of Schwartz.

Definition 8. A function f : R → C is locally integrable if
∫ b
a f (t)dt <∞ for all a, b.

Lemma 10. Any continuous, including piecewise continuous,
function is locally integrable.

Lemma 11 (regular). Any locally integrable function f is a
generalized function defined by

〈
f ,φ

〉 =
∫∞

−∞
f (t)φ(t)dt <∞. (42)

In this case, f is called regular.

Lemma 12. Any generalized function has derivatives of all
orders.

Lemma 13. There exists the Fourier transform of any general-
ized function.

Definition 9 (rapid function). A function of rapid decay is a
smooth function φ : R → C such that tnφ(r)(t) → 0 as t →
± ∞ for all n, r ≥ 0, where C is the space of complex num-
bers. The set of all functions of rapid decay is denoted by S.
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Lemma 14. Every function belonging to S is absolutely inte-
grable.

4.2. Proof of Existence. Define the norm and inner product of
X ∈ S by

‖X‖2 = 〈X ,X〉 =
∫∞

0
X2(u)w(u)du, (43)

where w ∈ S. Combining any X ∈ S with its limit yields a
Hilbert space that we denote again by S without confusions.

Let g ∈ S be a system function such that it transforms its
input X ∈ S to the output by

y = (X ⊗ g) ∈ S. (44)

Denote the system by the operator L. Then, we purposely
force the functionality of L such that it maps an element X ∈
S to another element (X ⊗ g) ∈ S. Note that L is a linear
operator. In fact, according to Lemma 8, we have

L
(
X ∧ g) = L(X)∧ L(g). (45)

In addition, from Lemma 9, we have

L(X + K) = L(X) + K. (46)

Therefore, L is a linear mapping from S to S.
Denote by L the space consisting of all such operators by

L(S,S) = L(S). (47)

Then, from Lemmas 8 and 9, one can easily see that L(S) is a
linear space.

Lemma 15 (archimedes criterion). For any positive real
numbers a > 0 and b > 0, there exists positive integer n ∈ Z
such that na > b (see [130]).

Lemma 16 (archimedes). If b ∈ R, there exists n ∈ Z such
that b < n (see [106]).

Lemma 17. An operator T : X �→ Y is invertible if and only if
there exists constant m > 0 such that for all x ∈ X , ‖Tx‖ ≥
m‖x‖, where X and Y are linear normed spaces (see [131]).

From the above discussions, we obtain the following
theorem.

Theorem 2 (existence). For X , g ∈ S and X(0) /= 0 and
g(0) /= 0, if L(X) = X ⊗ g or L1(g) = g ⊗ X , then both L
and L1 are invertible. Consequently, the identity in the min-
plus algebra exists.

Proof. Consider

‖LX‖ =
√∥∥X ⊗ g∥∥

=
√∫∞

0

[
inf

0≤u≤t
{
X(u) + g(t − u)

}]2

w(u)du.

(48)

Since

inf
0≤u≤t

{
X(u) + g(t − u)

} ≥ inf{X(u)} = X(0) (49)

and X(u) ∈ S, we have

0 < X(0) ≤ X(u). (50)

According to Lemmas 15 and 16, there exists m > 0 such that

X(0) ≥ m2X(u). (51)

Therefore,

‖LX‖ ≥
√∫∞

0
[inf{X(u)}]2w(u)du

=
√∫∞

0
[X(0)]2w(u)du

≥ m

√∫∞

0
X(u)2w(u)du = m‖X‖.

(52)

Similarly, if L1 ∈ L(S) is such that L1(g) = g ⊗ X , we have
‖L1g‖ ≥ m1‖g‖ since g(0) /= 0, where m1 > 0 is a constant.
Thus, according to Lemma 17, Theorem 2 holds.

Note 7. In Theorem 2, we need the conditions of X(0) /= 0
and g(0) /= 0. Since X(t) and g(t) are wide sense increasing,
we need in fact X(0) > 0 and g(0) > 0.

5. Representation of Identity in
Min-Plus Algebra

Express the Dirac-δ function by

δ(t) = 1
2π

+
1
π

∞∑

k=−∞
cos(kt). (53)

For the purpose of distinguishing the identity we present
from the conventional one, we denote I(t) as the identity in
what follows instead of I1(t) as used in Section 3.

Theorem 3 (representation). The identity in the min-plus
algebra is expressed by

I(t) = lim
T→ 0

⎡
⎣ 2
T

+
4
T

∞∑

n=1

cos
(

2nπt
T

)⎤
⎦. (54)

Proof. Take the following into account

∞∑

n=0

δ(t − nT) (T > 0). (55)

Then, the identity in the discrete case is given by

I(k) =
∞∑

n=0

δ(k − nT). (56)
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Si(t)Xi(t) Yi(t)

Figure 3: Single node with arrival and departure traffic.

S1(t)X1(t) YN(t)SN(t)

Figure 4: N tandem nodes with arrival and departure traffic.

The identity in the continuous case is taken as the limit
expressed by

I(t) = lim
T→ 0

∞∑

n=0

δ(t − nT). (57)

Considering the Poisson’s summation formula, we have

I(k) = 2
T

+
4
T

∞∑

n=1

cos
(

2nπk
T

)
. (58)

In the limit case,

I(t) = lim
T→ 0

⎡
⎣ 2
T

+
4
T

∞∑

n=1

cos
(

2nπt
T

)⎤
⎦. (59)

This completes the proof.

Remark 8. If one uses the representation in Theorem 3, the
contradictions given in (38) and (41) vanish.

Note 8. The identity expressed by (59) is an asymptotic one.

6. Discussions

We mention an application of min-plus algebra to CPNS.
Denote by Yi(t) the accumulated function characterizing
the output of the ith node (Figure 3). Then, the min-plus
convolution can be used to establish the relationship between
Xi(t), Si(t), and Yi(t) by

Yi(t) ≥ Xi(t)⊗ Si(t) = inf
0≤u≤t

{Si(u) + Xi(t − u)}. (60)

Suppose a traffic function passes through N tandem
nodes from the first node with the service curve S1(t) to
the Nth node with the service curve SN (t) to reach the
destination as indicated in Figure 4. Denote the departure
traffic of the Nth node by YN (t). Then,

YN (t) ≥ X1(t)⊗ S1
N (t) = inf

0≤u≤t
{
S1
N (u) + X1(t − u)

}
, (61)

where (see [132])

S1
N (t) = S1(t)⊗ S2(t)⊗ · · · ⊗ Si(t) · · · ⊗ SN (t). (62)

Note 9. Min-plus algebra can be used to linearize a nonlinear
system as can be seen from (62). Thus, it may yet be used as
a theory in the aspect of data transmission systems in CPNS.

7. Conclusions

We have proposed the problem regarding the conventional
identity in the min-plus algebra. In addition, we have
presented the proof that the identity in the min-plus algebra
exists in the domain of generalized function. Moreover, we
have given the asymptotic expression of the identity in the
system of min-plus algebra.
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