A 0.096-mm² 1–20-GHz Triple-Path Noise-Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS–nMOS Configuration

Haohong Yu®, Yong Chen®, Member, IEEE, Chirn Chye Boon®, Senior Member, IEEE, Pui-In Mak®, Fellow, IEEE, and Rui P. Martins®, Fellow, IEEE

Abstract—This article proposes a novel wideband common-gate (CG) common-source (CS) low-noise amplifier (LNA) with a dual complementary pMOS–nMOS configuration to provide a current-reuse output. Triple-path noise-cancellation is effectively revealed to eliminate the thermal noise of the two CG transistors. Simultaneously, partial cancellation of intrinsic third-order distortion of output-stage transistors improves the input third-order intercept point (IIP3). In addition, we embed a resistive feedback in one of the auxiliary CS amplifiers to balance the multiple tradeoffs between noise figure (NF), input matching (S11), and forward gain (S21). Fabricated in 65-nm CMOS, the proposed wideband LNA exhibits an IIP3 of 2.2–6.8 dBm and an NF of 3.3–5.3 dB across a 19-GHz BW while consuming 20.3 mW at 1.6 V. S11 is <−10 dB up to 23 GHz by designing a π-type input-matching network. The LNA exhibits a peak S21 of 12.8 dB and occupies a very compact die area of 0.096 mm².

Index Terms—CMOS, common gate (CG), common source (CS), input third-order intercept point (IIP3), noise figure (NF), partial distortion canceling, pMOS–nMOS configuration, resistive feedback, triple-path and dual-path noise canceling (NC), wideband input matching, wideband low-noise amplifier (LNA).

Manuscript received April 20, 2019; revised June 8, 2019 and July 13, 2019; accepted September 12, 2019. Date of publication December 4, 2019; date of current version January 13, 2020. This work was supported in part by the University of Macau under Grant MYRG2017-00167-AMSV, in part by the Macau Science and Technology Development Fund (FDCT)–SKL, and in part by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus of Research Excellence and Technological Enterprise Program. (Corresponding author: Yong Chen.)

H. Yu and C. C. Boon are with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (e-mail: yuhaha012@e.ntu.edu.sg).

Y. Chen is with the State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China, and also with the Department of ECE, Faculty of Science and Technology, University of Macau, Macau 999078, China (e-mail: ychen@um.edu.mo).

P.-I. Mak is with the State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China, and also with the Department of ECE, Faculty of Science and Technology, University of Macau, Macau 999078, China (e-mail: ychen@um.edu.mo).

R. P. Martins is with the State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China, and also with the Department of ECE, Faculty of Science and Technology, University of Macau, Macau 999078, China, on leave from the Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal (e-mail: rmpmartins@um.edu.mo).

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2019.2949796

1. INTRODUCTION

WIDEBAND circuits are promising for software-defined radios [1], [2] and broadband communication systems [3]. Specifically, the forefront wideband low-noise amplifier (LNA) determines the input sensitivity of the receiver and dominates its power dissipation. Many wideband LNAs have been reported, e.g., to cover the 3.1–10.6-GHz band for ultra-wideband (UWB) communication. Recently, prior works [4]–[9] have aimed to extend the LNA’s bandwidth (BW) beyond 20 GHz. In [9], a self-biased resistive-feedback together with a source-degeneration inductor is used to achieve good wideband input matching (S11). Yet, wideband S11 is challenging due to the parasitic capacitance of the CMOS devices, and the input impedance at high frequencies can be heavily affected by its imaginary part. In fact, S11 < −10 dB could not be achieved in a few prior works targeting 20 GHz [4]–[6]. The tradeoff between S11 and noise figure (NF) also imposes design challenges. Noise canceling (NC) is known for breaking the tradeoff between S11 and NF. Without the concern of the noise contribution from the input-matching transistor, S11 can be optimized with one additional degree of freedom. S11 can be easily designed below −10 dB with NC [10]–[21].

This article proposes a common gate (CG)-based NC LNA topology that uses a structure based on resistive-feedback common source (CS) as one of the auxiliary amplifiers in the NC path. Differing from a conventional CG-based NC LNA, the addition of the feedback resistor improves forward gain (S21), S11, and NF. The nMOS-based LNA topology is expanded to a stacked pMOS–nMOS configuration allowing current-reuse and third-order intercept point (IP3) improvement. By the aid of the pMOS–nMOS topology, the noise generated from the input CG transistors is canceled through three, instead of conventionally two, feed-forward paths. In contrast to [13], the explicit triple-path NC in our design is achieved at the output stage/node and the current-reuse configuration as an auxiliary amplifier is utilized as the output stage. The partial linearity improvement can be achieved through the auxiliary amplifier stage. Noises traveling through the three paths are analyzed and discussed in detail. A π-match network is used to facilitate an input matching up
TABLE I
CONFIGURATIONS AND PERFORMANCES OF THE STATE-OF-THE-ART NC LNAs

<table>
<thead>
<tr>
<th>Circuit Configuration</th>
<th>Fig. 1(a) in [10]</th>
<th>Fig. 1(b) in [11]</th>
<th>Fig. 1(c) in [13]</th>
<th>Fig. 1(d) in [15]</th>
<th>Fig. 2(a) Our work target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked pMOS-nMOS</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gain (dB) @ GHz</td>
<td>9.7 @ 4</td>
<td>16.8 @ 4</td>
<td>14.5 @ 0.3</td>
<td>17.5 @ 0.2</td>
<td>10 – 15</td>
</tr>
<tr>
<td>IIP3 (dBm) @ GHz</td>
<td>–6.2 @ 6</td>
<td>–4.5 @ 4</td>
<td>6 @ 0.9</td>
<td>14 @ 2</td>
<td>5 – 10</td>
</tr>
<tr>
<td>BW (GHz)</td>
<td>10.7</td>
<td>6.5</td>
<td>1.3</td>
<td>1.9</td>
<td>20</td>
</tr>
<tr>
<td>Headroom</td>
<td>(V_{gs} + V_{ds} + V_{RD})</td>
<td>(V_{gs} + V_{ds} + V_{RD})</td>
<td>(2V_{gs} + 2V_{RD})</td>
<td>(2V_{gs} + 2V_{RD})</td>
<td>(2V_{gs} + 2V_{RD})</td>
</tr>
<tr>
<td>Technology (nm)</td>
<td>180</td>
<td>65</td>
<td>130</td>
<td>180</td>
<td>65</td>
</tr>
<tr>
<td>Power (mW)</td>
<td>20</td>
<td>11.3</td>
<td>17.4</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>

higher gain and lower NF than that in the CG configuration. Yet, prior works [11], [12] report an IIP3 of ~ -4 dBm and it is insufficient to suppress the intermodulation due to the increased coexistence of the adjacent blockers or transmitter on-chip leakage [13], [14]. IIP3 is vital to LNAs whose BW is as wide as 20 GHz, because many high-order harmonics can intermodulate with each other and generate a third-order interference within the 20-GHz range of interest.

To achieve high linearity performance in NC LNA designs, several modifications based on CG configuration are proposed as follows. As shown in Fig. 1(c), a stacked pMOS–nMOS configuration as the input-matching stage is combined with noise cancellation based on a CG configuration to obtain an excellent IIP3, which is above 10 dBm. By properly biasing the transistors, the distortion components generated by pMOS and nMOS will cancel each other and improve IIP3 [22]. Nevertheless, the high linearity performance [13], [14] is only achieved within a limited BW, i.e., less than 1.9 GHz. It is also interesting to observe that, in [13] and [14], noise from a single transistor travels in more than two paths, leading to an implicit multipath NC instead of the conventional two-path NC. However, this phenomenon is not mentioned or analyzed by the authors. The NC LNA in [15] combines a current mirror with CG configuration, as shown in Fig. 1(d), to avoid distortions caused by voltage-to-current conversion and to improve IIP3. Regrettably, due to the addition of a cascode transistor as a current mirror, the voltage headroom becomes constrained and a supply voltage as high as 2.2 V is necessary in [15]. Moreover, the study in [15] only has a BW of 1.9 GHz. Table I summarizes the pros and cons of the state-of-the-art NC LNAs. To obtain a good IIP3 over 20-GHz BW remains a challenge in the state of the art. The target of this work is to design an LNA with good linearity across a BW of 20 GHz. The target gain is set to a moderate 10–15 dB to avoid saturating the subsequent stage circuit, e.g., mixer. As no current mirror is used, our design has a lower headroom than that in [15].

II. OVERVIEW OF EXISTING NC LNA TOPOLOGIES

The NC LNA is categorized into two major types: CG and resistive-feedback based on the input-matching method. CG-based NC LNA is proposed by Liao and Liu [10] shown in Fig. 1(a); however, it has a low gain of 9.7 dB, a low IIP3 of -6.2 dBm, and a high NF of 4.5 dB. Generally, the resistive-feedback NC LNA [11], [12] [see Fig. 1(b)] provides to 20 GHz. With a die area of just 0.096 mm2 and power of 20.3 mW, the LNA prototyped in 65-nm CMOS shows an attractive FOM [12] of 22.7 GHz.

The article is structured as follows. Section II reviews NC LNA designs in the literature. Section III introduces the proposed wideband LNA, followed by its implementation details in Section IV. Section V analyzes the effect of the resistive feedback, triple-path NC mechanism, and IIP3 improvement. Section VI summarizes the measurement results. Finally, Section VII draws the conclusions.

III. PROPOSED WIDEBAND LNA

Fig. 2(a) shows the proposed CG-based NC LNA with a resistive-feedback auxiliary amplifier and a current-reuse...
output. The feedback resistor \(R_f \) improves input matching and in-band gain ripple to be detailed in Section V. In our proposed topology, a single pMOS transistor \(M_6 \) is utilized to replace one nMOS transistor \(M_3 \) and one resistor \(R_{D2} \) in a conventional CG-based NC LNA [see Fig. 1(a)]. \(M_6 \) together with \(M_3 \) form a current-reuse configuration at the output stage. Compared with the current-mirror-based NC LNAs [see Fig. 1(d)], which use a diode-connected transistor \(M_3 \) and consume large voltage headroom (i.e., one \(V_{GS} \) across the gate and source terminals), our LNA is more headroom-efficient.

Fig. 2(b) presents the NC principle of the proposed wideband LNA. Herein, \(r_o \) is the equivalent resistance of the parallelly connected source–drain resistance of \(M_3 \) and \(M_6 \). The noise current of the input-matching transistor \(M_2 \) generates opposite-polarity noise voltages at the source and drain of \(M_2 \). The amplification by \(M_1 \) and \(M_6 \), respectively, inverts the polarity of both noise voltages. Thereafter, the noise voltages at the output generated through the two paths have opposite polarities and cancel each other. Signal voltage as input located at the source of \(M_2 \) travels to the output via two paths. The first path is through \(M_2 \) and then \(M_6 \). The second path is through the resistive-feedback CS amplifier formed by \(M_3 \). Both paths invert the signal voltages, adding them up at the output. Unlike the auxiliary amplifiers in the conventional CG-based NC LNA [see Fig. 1(a)], which uses two nMOS transistors \(M_2 \) and \(M_3 \), we employ the current-reuse configuration \((M_6 \) and \(M_3 \)).

Fig. 3 shows how the introduction of pMOS facilitates the evolution from the basic architecture to the pMOS–nMOS complementary configuration. The CG-configured \(M_1 \) and \(M_2 \) form the input-matching stage, \(M_3 \), \(M_4 \), and \(R_F \) become an inverter forming the first auxiliary amplifier. \(M_5 \) and \(M_6 \) are CS-configured, creating the second and third auxiliary amplifiers, respectively. After the above evolution, current-reuse topology has been achieved at \(M_1 \) and \(M_4 \) stages as well as at \(M_5 \) and \(M_6 \) stages. Moreover, multiple prior works [13], [15], and [22] have indicated that a complementary pair will benefit the linearity performance of the amplifier. The impact of the evolved pMOS and nMOS complementary structure on IIP3 of the proposed LNA will be detailed in Section V.

IV. WIDEBAND LNA DESIGN DETAILS

Fig. 4 depicts the implementation of the proposed wideband LNA. We obtain the input \(\pi \)-match network with the matching capacitor and inductor, \(C_m \) and \(L_m \), respectively, as well as the parasitic capacitor \(C_x \) at node X. We add a testing buffer to drive the output capacitance and to provide output matching. To ensure good linearity, the testing buffer, which is the last stage, adopts resistive-degeneration configuration \(R_{(eq)} \). \(R_L \) is the 50-Ω load resistor and \(C_b \) is the pad capacitor. \(L_p \) is series connected to the drain of the buffer transistor to alleviate the impact of \(C_L \) on the BW of the LNA core. We insert \(L_o \) in the front of the testing buffer to broaden the BW at its gate. Furthermore, \(C_y \) and \(C_b \) are parasitic capacitance at node Y and the gate–source capacitance of \(M_b \), respectively.

A. WIDEBAND INPUT-IMPEDANCE MATCHING

The main limiting factor in the broadband input-impedance matching is the parasitic capacitor of the input transistor, which deteriorates matching at high frequency. Fig. 5(a) shows the common method to broaden the frequency of input matching which is the addition of a series inductor before the input transistor [10], [11]. \(C_x \) is the gate–source capacitance of the input transistor and \(R_m \) is the input resistance, approximated to \(1/g_m \), generated by the CG amplifier. The resulting input impedance is

\[
Z_{in} = \frac{L_m C_x R_{in}s^2 + L_m s + R_{in}}{C_x R_{in}s + 1} - \frac{-L_m C_x R_{in}s^2 + j\omega L_m + R_{in}}{j\omega C_x R_{in} + 1}
\]

By referring to (1), at a moderately high frequency, the second term \(j\omega L_m \) in the numerator cancels the effect of \(j\omega C_x R_{in} \) in the denominator to a certain extent. Yet, as the frequency increases to an even higher value, the effect of the first term
network can be formed when C_m is (a) dB format and (b) Smith chart format. rewritten as illustrated in Fig. 5(b). Then, the input impedance can be

Fig. 5. Wideband input matching based on (a) L-match network and (b) π-match network.

$L_m C_x R_{in} s^2$ in the numerator begins to merge and the condition of input matching degrades again. Thus, only introducing L_m limits the improvement of the matching range. A π-match network can be formed when C_m is considered before L_m as illustrated in Fig. 5(b). Then, the input impedance can be rewritten as

$$Z_{in} = \frac{L_m C_x R_{in} s^2 + L_m s + R_{in}}{L_m C_m C_x R_{in} s^3 + L_m C_m s^2 + (C_m + C_x) R_{in} s + 1}.$$ (2)

Based on (2), apart from dc, there is another frequency where the perfect input matching can be obtained. By carefully optimizing the value of L_m, the other matching frequency can be above 20 GHz.

Assume that the CG stage itself provides a reasonable S_{11} of -15 dB at dc. Fig. 6 plots the S_{11} under $C_m = C_x = 120$ fF and $L_m = 500$ pF, by using simply the CG configuration, S_{11} is less than -10 dB for only 12 GHz. By adding L_m, the input-matching frequency range approaches 19 GHz. By using the π-match network, the input matching range is further extended to 26 GHz, ensuring $S_{11} < -10$ dB beyond 20 GHz. In a packaging scenario, L_m can be formed by both on-chip inductor and bonding wire, and C_m can be implemented by the discrete capacitor on the printed circuit board (PCB).

In Fig. 4, the resistance $R_{in, LNA}$ looking into the sources of matching stage transistors (M_1 and M_2) can be derived as

$$R_{in, LNA} = \frac{R_F + r_o}{2 g_m (R_F + r_o + g_{m5} R_D r_o) + 2 g_{m3} r_o + 1}$$ (3)

where $r_0 = r_{o3} || r_{o4} || r_{o5} || r_{o6}$, r_{o3}, r_{o4}, r_{o5}, and r_{o6} are the source–drain resistance of M_3, M_4, M_5, and M_6, respectively. g_{m3} is the transconductance of M_x ($x = 1$–6), and we can assume $g_{m1} \approx g_{m2}$, $g_{m3} \approx g_{m4}$, and $g_{m5} \approx g_{m6}$ to simplify the following analysis. R_D is the load resistor in series connected to the drain of the CG stage. R_F is a feedback resistor between the gate and the source of the inverter formed by M_1 and M_4. Its effect on input-impedance matching gain as well as NF will be discussed in detail in Section V. Here, considering $R_{in, LNA} = R_S$ and $C_m = C_x$, S_{11} becomes

$$|S_{11}| = \frac{-L_m C_m R_S^2 s^3 + (L_m - 2 C_m R_S^2) s}{L_m C_m R_S^2 s^3 + 2 L_m C_m R_S s^2 + (L_m + 2 R_S C_m) s + 2 R_S}.$$ (4)

Furthermore, C_x in Fig. 4 is the total parasitic capacitance, including the source–drain capacitance of M_1, M_2, M_3, and M_4 at node X. S_{11} calculation results based on (4) will be plotted in Fig. 22(a) in Section VI.

B. Frequency Response of S_{21}

Referring to Fig. 4, the forward gain of the LNA can be divided into two parts: the first A_0 (from V_i to V_X) provided by the input-matching network and the second A_1 (gain from V_X to V_B) set by the core of the LNA. According to the small-signal equivalent circuit shown in Fig. 7, the voltage gain from node Y to the gate of the testing buffer transistor is given by

$$\frac{V_B}{V_Y} = \frac{C_b R_{deg} s + g_{mb} R_{deg} + 1}{L_o C_b s^2 + C_b R_{deg} s + g_{mb} R_{deg} + 1}$$ (5)

where g_{mb} and C_b are the transconductance and gate–source capacitor of M_B, respectively. R_{deg} is the degeneration resistor. L_o, the inductor in series connected to the gate of M_B, prevents the LNA’s BW from being deteriorated by the parasitic capacitance at node Y. Equation (5) supposes that the source–drain resistor of M_B, r_b, is large, such that Z_{out} has little impact on V_B / V_Y. Then, the voltage gain from nodes Y to X becomes

$$\frac{V_Y}{V_X} = \frac{-2 g_{m1} g_{m3} R_D R_F + 2 g_{m3} R_F - 1}{Z_y + R_F} Z_y$$ (6a)

where Z_y is the total impedance at node Y, given by (6b) and C_y is the total parasitic capacitance at node Y. Therefore,
the gain (A_v) of LNA’s core, which is the gain from node X to the gate of the testing buffer, becomes

$$A_v = \frac{V_B}{V_X} \frac{V_Y}{V_X} = -\frac{C_R R_{\text{deg}} s + g_{mb} R_{\text{deg}} + 1}{L_o C_b s^2 + C_b R_{\text{deg}} s + g_{mb} R_{\text{deg}} + 1} \frac{2 g_{m1} g_{m5} R_D R_F + 2 g_{m3} R_F - 1}{Z_Y + R_F}. \quad (7)$$

On the other hand, the voltage gain (A_0) of the input-matching network is given by (8a), as shown at the bottom of this page

$$Y_s = Z_s^{-1} = 2 g_{m1} + \frac{2 g_{m1} g_{m5} R_D Z_Y + 2 g_{m3} Z_Y + 1}{R_F + Z_Y}. \quad (8b)$$

Herein, Y_s is the inverse of the impedance Z_s. S_{21} is twice the voltage gain in a 50-Ω system with impedance matching and given by

$$S_{21} = 2 A_0 A_v. \quad (9)$$

S_{21} calculation results based on (9) will be plotted in Fig. 22(b) in Section VI.

C. Frequency Response of NF

The major noise sources in the LNA are the channel thermal noise from M_1, M_2, M_3, M_4, M_5, and M_6, as well as the thermal noise from R_D and R_F. Fig. 8 shows the small-signal equivalent circuit of Fig. 4 for NF calculation. Furthermore, the transfer functions of the noise current sources to node Y are the same for M_3, M_4, M_5, and M_6. Thus, Fig. 8 only exhibits one of the four noise current sources. The same applies to M_1 and M_2. The noise factor of M_1 is given by (10a), as shown at the bottom of the next page. In (10a), Z_s is written as

$$Z_s = \frac{L_m C_m R_s s^2 + L_m s + R_s}{L_m C_m C_s R_s s^3 + L_m C_s s^2 + (L_m s + C_m R_s) s + R_s Y_s + 1}. \quad (10b)$$

Fig. 8 also shows that Z_s is the impedance looking toward the source from the parasitic capacitor C_s. γ is the coefficient of the channel noise and $\alpha = g_{m1}/g_{d0}$, where g_{d0} is the zero-bias drain conductance. Equation (10a) reveals that we can achieve a perfect NC if $g_{m5} R_D(1 + R_F/Z_s) + 1 = 2 g_{m3} R_F$, where the left side is a complex number and the right side is a real number. Then, a perfect NC cannot be achieved, however, a good approximation will be $\Re[g_{m5} R_D(1 + R_F/Z_s) + 1] = 2 g_{m3} R_F$. Note that the transfer functions from $I_{m,M1}$ and $I_{m,M2}$ to the node Y are equal. A similar case is true for $I_{m,M3}$, $I_{m,M4}$, $I_{m,M5}$, and $I_{m,M6}$. Thus, the contribution of M_2, M_3, M_4, M_5, and M_6 for the noise factor is given by

$$F_{M2} = \frac{g_{m2}}{g_{m1}} F_{M1} \quad (11)$$

$$F_{M1} = \frac{g_{m1}}{g_{m3}} F_{M3} \quad (12)$$

$$Z_Y = \frac{r_o (L_o C_b s^2 + R_{\text{deg}} C_b s + g_{mb} R_{\text{deg}} + 1)}{L_o C_b C_s r_o s^3 + (C_b C_s R_{\text{deg}} r_o + L_o C_b) s^2 + [C_b (R_{\text{deg}} + r_o) + C_s r_o (1 + g_{mb} R_{\text{deg}})] s + g_{mb} R_{\text{deg}} + 1} \quad (6b)$$

$$A_0 = \frac{V_X}{V_s} = \frac{1}{L_m C_m C_s R_s s^3 + L_m (C_m R_s Y_s + C_s) s^2 + (L_m s + C_m R_s) s + R_s Y_s + 1}. \quad (8a)$$

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 01,2020 at 05:01:26 UTC from IEEE Xplore. Restrictions apply.
where F_{M3} is derived in (13), as shown at the bottom of this page, and i takes 4, 5, and 6. Apart from the transistor channel thermal noise, the thermal noise from resistors R_D and R_F is also taken into consideration. The two noise factors’ contributions F_{RD} and F_{RF} from R_D and R_F can be obtained in (14) and (15), as shown at the bottom of this page, respectively. Finally, by taking the parasitic resistor (R_m) of L_m into account, the overall noise factor is derived as

$$F = 1 + \frac{R_m}{R_S} + \sum_{n=1}^{6} F_{Mn} + 2F_{RD} + F_{RF}. \quad (16)$$

We will plot the NF calculation results based on (16) in Fig. 22(c) in Section VI.

V. Design Considerations and Simulation Results

Fig. 9 shows the complete schematic of the proposed wideband LNA. We employ three capacitors C_{i1}, C_{i2}, and C_{i3} for dc-decoupling in the forward path and voltages V_o, V_p, V_{n2}, V_{p2}, and V_B to bias the transistors M_2, M_1, M_5, M_6, and M_B, respectively. We use an off-chip dc block at the input in order to keep the internal bias condition of the LNA’s core from any external circuitry interference. Here, C_m is composed of 90-fF ESD capacitance and other parasitic capacitances of $\sim 30 \ fF$. Fig. 9 shows the source of our following analysis. We run extensive circuit simulations on Cadence Virtuoso for verifying our analysis.

A. Effects of RF

According to (3), the utilization of RF increases the input admittance by introducing the term $(2g_{m3}r_0 + 2g_{m1}g_{m5} \times R_Dp + 1)/(R_F + r_0)$. Without R_F, i.e., R_F is equal to infinity, a larger g_{m1} is required in order to reach the same input matching condition. In Fig. 10(a), we plot S_{11} under the situations where we only use CG and various values of R_F in addition to CG. Considering a CG-only situation, we adjust the size of M_1 and M_2 to obtain the same dc matching condition when R_F is 1 kΩ. Yet, larger sizes of M_1 and M_2 produce larger parasitic capacitance and further results in a degradation of S_{11} at a higher frequency. By comparing S_{11} in three different situations with R_F equal to 500 Ω, 1 kΩ, and infinity, we can observe that a smaller R_F will lead to a better S_{11}, but the effect of R_F on S_{21} and NF still needs to be studied to find an adequate value of R_F.

As plotted in Fig. 10(b), we compare S_{21} under different circumstances where we only use CG and various values of R_F in addition to CG. Under the CG-only situation, due to the increase in the size of the input transistors for matching purposes, the BW reduces significantly. Based on (7), the term $(2g_{m1}g_{m5}r_0 + 2g_{m3}R_F - 1)/(Z_y + R_F)$ indicates that the introduction of R_F will lower the gain of the proposed LNA. Such a gain becomes lower as R_F decreases in Fig. 10(b), but R_F can be used to facilitate a flatter in-band gain variation by reducing the gain at lower frequency. This can be explained by the fact that R_F is a real impedance and it has higher influence on the gain at a lower frequency range than at higher frequency. Therefore, by properly choosing the value of R_F, we can broaden LNA’s BW, reducing the in-band gain variation while maintaining a moderate gain of $\sim 13 \ dB$.

Considering a CG-only situation, due to the poor input matching at high frequency and the large gain difference between low and high frequencies, NF [see Fig. 10(c)] goes up rapidly with frequency. With the introduction of R_F, we obtain a better input matching and flatter gain, leading to a flatter NF across the frequency of interest. However, Fig. 10(b) and (c) shows a tradeoff between a low NF and a flat gain. Fig. 10(d) plots the simulated IIP3 versus R_F. It is found that $R_F = 1 \ k\Omega$ gives an optimized IIP3 of around 5 dBm. Note that IIP3 is optimized to 5 dBm by different methods in the work. The other method is discussed in detail in Section V-C. Therefore, we set R_F of 1 kΩ to optimize IIP3 and also to provide a good balance between a low S_{11}, a flat gain, and a low NF.

$$F_{M1} = \frac{g_{m1}}{R_{m1}A_0A_1^2} \times \gamma \left| \frac{Z_y(2g_{m1}R_FZ_yZ_F + Z_S) - 2g_{m3}R_FZ_yZ_S}{Z_y(2g_{m1}R_FZ_yZ_F + Z_S) + Z_S} \right|^2$$

$$F_{M3} = \frac{g_{m3}}{R_{m3}A_0A_1^2} \times \gamma \left| \frac{Z_y(2g_{m1}R_FZ_yZ_S + Z_S + R_F)}{Z_y(2g_{m1}R_FZ_yZ_S + Z_S) + Z_S} \right|^2$$

$$F_{RD} = \frac{1}{R_D R_{S3} |A_0A_1|^2} \times \gamma \left| \frac{2g_{m1}g_{m5}R_DZ_yZ_S + 2Z_yZ_S(g_{m1} + g_{m3}) + 2g_{m1}R_FZ_yZ_S + R_F + Z_y + Z_S}{2g_{m1}g_{m5}R_DZ_yZ_S + 2Z_yZ_S(g_{m1} + g_{m3}) + 2g_{m1}R_FZ_yZ_S + R_F + Z_y + Z_S} \right|^2$$

$$F_{RF} = \frac{1}{R_F R_{S3} |A_0A_1|^2} \times \gamma \left| \frac{2g_{m1}g_{m5}R_DZ_yZ_S + 2Z_yZ_S(g_{m1} + g_{m3}) + 2g_{m1}R_FZ_yZ_S + R_F + Z_y + Z_S}{2g_{m1}g_{m5}R_DZ_yZ_S + 2Z_yZ_S(g_{m1} + g_{m3}) + 2g_{m1}R_FZ_yZ_S + R_F + Z_y + Z_S} \right|^2$$

Fig. 9. Complete schematic of the proposed wideband LNA.
B. Triple-Path NC

Fig. 11(a) depicts how to realize the conventional NC in CG-based NC LNA. The channel thermal noise of M_2 generates two off-phase noise voltages at the drain and source of M_2. The two noise voltages are both source-inverted and cancel each other due to their off-phase polarity. In the proposed LNA, we create an additional NC path with M_1 and M_5, as shown in Fig. 11(b). Part of I_{n,M_2} flows through M_1 and R_D, and it produces a noise voltage at the drain of M_1, which has an opposite phase to the noise voltage at the drain of M_2. These two noise voltages are both source-inverted by pMOS and cancel each other at the output. Fig. 11(c) plots the overall NC scheme. The noise voltage generated by I_{n,M_2} through M_6 (path A) is canceled by the noise through a conventional NC path, M_3 and M_4 (path B), as well as the noise through an extra NC path, M_1 and M_5 (path C) in the proposed design. On the other hand, signal voltages generated through all three paths (A, B, and C) have the same polarity.
and add up at the output. Fig. 12 shows the small-signal equivalent circuit used to study the NC mechanism in the proposed wideband LNA. We add an ac current source $I_{ac, M2}$ across the drain and source of $M2$ to emulate its channel thermal noise. We studied the effect of the additional NC path across 0–20 GHz by comparing the noise currents flowing through $M5$ and $M6$. Transfer functions $H_{n, A}$ and $H_{n, C}$ can be defined as

$$I_{n, M5} = H_{n, A} I_{ac, M2}$$
$$I_{n, M6} = H_{n, C} I_{ac, M2}$$

where $H_{n, A}$ and $H_{n, C}$ are given in (18a) and (18b), as shown at the bottom of this page, respectively. Herein, $I_{n, M5}$ and $I_{n, M6}$ are the noise currents flowing through $M5$ and $M6$, respectively. Furthermore, we define $H_{n, ac}$ as the sum of $H_{n, A}$ and $H_{n, C}$

$$H_{n, ac} = H_{n, A} + H_{n, C}.$$

According to (18a) and (18b), $H_{n, A}$ and $H_{n, C}$ have opposite polarity, indicating that they can cancel each other. Fig. 13(a) displays the simulated and calculated $H_{n, A}$, $H_{n, C}$, and $H_{n, ac}$. We obtained the simulation results by setting $I_{ac, M2}$ to unity and plotting the drain current through $M5$ and $M6$. Noise current from the additional NC path (path C) cancels part of the noise current through $M6$ (path A). This is supported by the fact that $H_{n, ac}$ is lower than $H_{n, A}$ across the entire BW in both the calculation and the simulation. Similarly, noise from pMOS $M1$ is also canceled by the additional NC path (path A in this case), and the cancellation effect is also supported by both calculation and simulation [see Fig. 13(b)].

After noises through $M5$ and $M6$ cancel each other, the remaining noise is then canceled by the noise through $M1$, $M4$, and RF (path B). Based on Fig. 12, the noise through path B can be expressed by

$$I_{n, M3} + I_{n, M4} + I_{n, RF} = H_{n, B} I_{ac, M2}$$

where $I_{n, M3}$, $I_{n, M4}$, and $I_{n, RF}$ are the noise currents flowing through $M3$, $M4$, and RF, respectively. Thereafter, the overall transfer function of $I_{n, M2}$ to the output becomes

$$H_{M2, overall} = H_{n, AC} + H_{n, B}$$

where $H_{n, B}$ is derived as (20b), shown at the bottom of this page. Furthermore, (21) is consistent with (10a). Fig. 14(a) and (b) shows the overall NC effect of noise caused by $M2$ and $M1$, respectively. Here, we can define the cancel ratio (CR) to evaluate the NC effect as

$$CR = 1 - \frac{|H_{n, AC} + H_{n, B}|}{|H_{n, AC}|}. \quad (22)$$

We obtain a good NC effect for both $M1$ and $M2$ at dc as CR is equal to 1. CR for $M1$ and $M2$ remains a minimum value of 0.5 and 0.43 over 20-GHz BW, respectively.

Fig. 15(a)–(c) plots a summary of the major noise contribution sources at 2, 10, and 20 GHz, respectively. R_{DN} and R_{TP} are the resistors connected to the drain of $M2$ and $M1$, respectively. Noise contributions from $M1$ and $M2$ are not dominating due to a high noise-canceling ratio at 2 and 10 GHz. By observing noise contributions from the source resistor, the simulated NF is 2.88 dB at 2 GHz, 3.58 dB at 10 GHz,
of the transconductance of the neutralization of the first and second derivative of the
C. Partially Distortion Canceling

We apply a partial distortion cancellation which focuses on the
neutralization of the first and second derivative of the transconductance of M_5 and M_6. A complementary pMOS and nMOS pair can have a low second-order and third-order distortion under specific bias conditions. Fig. 16 presents the small-signal equivalent circuit of Fig. 9 for IIP3 analysis. The study of the partial distortion cancellation focuses on the core of the LNA, which starts from V_X to V_Y. g_{m12} is the sum of g_{m1} and g_{m2}, g_{m34} is the sum of g_{m3} and g_{m4}, and g_{m56} is the sum of g_{m5} and g_{m6}. We use an analysis approach similar to [13] and [15]. Distortions of the transistors are considered up to the third order. Applying Kirchhoff’s current law at node V_1 and node V_Y, we obtain

$$V_i = \frac{R_D}{2} \left(g_{m12} V_X + g_{m34} V_Y^2 + g_{m56} V_Y^3 \right)$$

$$V_X - V_Y = g_{m34} V_X + g_{m34} V_Y^2 + \frac{g_{m56} V_Y^3}{2} + \frac{V_Y}{Z_Y}$$

where g'_{m1} and g''_{m1} (i takes 12, 34, and 56) are the first and second derivatives of the transconductance of the complementary pairs M_1,M_2, M_3 and M_4, and M_5 and M_6, respectively. By solving (23), the relationship between V_X and V_Y becomes

$$V_Y = -\frac{Z_Y}{8(Z_Y+R_F)} \left(A_1 V_X + A_2 V_Y^2 + A_3 V_Y^3 \right)$$

where

$$A_1 = 4 R_D R_F g_{m12} g_{m56} + 8 R_F g_{m34} - 8$$

$$A_2 = R_D^2 R_F g_{m34} g_{m56}^2 + 2 R_D R_F g_{m12} g_{m34} + 4 R_F g_{m34}^2$$

$$A_3 = \frac{1}{6} R_D^3 R_F g_{m34}^2 g_{m56}^2 + R_D^3 R_F g_{m12} g_{m34}^2 + 4 R_D R_F g_{m34} g_{m56} + 4$$

Therefore, IIP3 of LNA’s core is written as

$$IIP3 = \sqrt{\frac{4}{3} \frac{A_1}{A_2}}$$

According to (24d) and (25), g'_{m56} and g''_{m56} are directly related to IIP3. Small values of g_{m56} and g_{m56} under the proper bias voltage can improve the linearity performance. Fig. 17(a)–(c) shows the simulated g_{m56}, g'_{m56} and g''_{m56} versus the gate bias voltage (i.e., $V_{B2} = V_{B3} = V_{B2}$). At around $V_{B2} = 0.86$ V, we obtain a good accumulation effect of g_{m5}

Fig. 14. Overall NC ratio of channel thermal noise of (a) nMOS M_2 and (b) pMOS M_1.

Fig. 15. Simulated relative noise contributions by individual components at (a) 2 GHz, (b) 10 GHz, and (c) 20 GHz.

Fig. 16. Small-signal equivalent circuit for IIP3 analysis.

and 4.11 dB at 20 GHz, respectively, showing an increase of 1.3 dB across the 20-GHz range.

Fig. 17. (a) Transconductance. (b) First-order derivatives of the transconductance of the complementary forward stage. (c) Second-order derivatives of the transconductance of the complementary forward stage. (d) IIP3 versus the gate bias voltage (V_{B2}).
Fig. 18. Simulation results versus frequency under different process corners and temperatures of (a) S_{11}, (b) S_{21}, and (c) NF. Simulation results versus V_{B2} under different process corners and temperatures of (d) IIP3. Simulation results versus temperature under TT corner of (e) IIP3.

and g_{m6}, leading to a maximum total transconductance for M_5 and M_6 stages. Moreover, we achieve a good cancellation of g_{m5}'' and g_{m6}'', resulting in g_{m56}'' close to 0. Although g_{m56}'' is not exactly 0 at this bias voltage, a clear cancellation of g_{m5}'' and g_{m6}'' can be observed at $V_{B2} = 0.86$ V in Fig. 17(c). In Fig. 17(d), simulated IIP3 of the proposed wideband LNA reaches a maximum value of 5 dBm at $V_{B2} = 0.88$ V, which is consistent with the above analysis.

Detailed simulation results of our proposed wideband LNA will be plotted in Figs. 22–24. Note that the pre- and postsimulations denote the schematic and post-layout simulations with the parasitics, respectively. We observe a good consistency between the calculated and simulated results, indicating the validity of our analysis and design approach.

D. Corner and Monte-Carlo Simulation Results

To evaluate the robustness of our proposed wideband LNA, its performance under various process corners and temperatures is examined based on the post-layout simulation. Fig. 18(a) and (b) plots the simulated S_{11} and S_{21} under typical and worst-case scenarios, respectively. Under the worst-case SS corner and 125 °C, $S_{11} < -9.5$ dB is maintained, and the worst BW and dc gain are 18 GHz and 12 dB, respectively. Fig. 18(c) shows that NF deteriorates at high temperature and it is improved at low temperature, which is commonly expected. Fig. 18(d) presents the IIP3 against V_{B2} under extreme corners and temperatures. It is worth to note that an optimal bias point exists under every condition. For the worst case, i.e., SS corner and -40 °C, the optimal IIP3 maintains at 2.5 dBm. A temperature-sweep simulation is also conducted to investigate the detailed impact of temperature on IIP3 and the result is plotted in Fig. 18(e). Across a range of -40–125 °C, IIP3 is maintained above 2.5 dBm and the highest IIP3 is 5.2 dBm at 40 °C.

Monte-Carlo (MC) simulation is conducted to further verify the effect of process variation and mismatch. Fig. 19(a) presents the low-frequency (i.e., around 1 GHz) gain distribution for MC simulation. The mean value is 13.36 dB and the standard deviation is 0.58 dB. MC results for IIP3 are plotted in Fig. 19(b), with a mean value and a standard deviation of 2.3 and 2.12 dB, respectively. It is observed that most of the points fall above 2 dBm. Yet, IIP3 varies in MC simulation results since this distortion cancellation mechanism is sensitive to bias condition. The deviations caused by temperature and process variations are within the acceptable range. MC results of NF at various frequencies are plotted in Fig. 19(c)–(e). The mean value of NF increases with frequency, which is consistent with results in Fig. 10(c). Standard deviation is maintained <0.2 dB from 2 to 20 GHz.

VI. MEASUREMENT RESULTS

Fig. 20 shows the die photo of the proposed wideband LNA implemented in 65-nm CMOS occupying a compact active area of 0.31×0.31 mm2. Herein, the dimensions (coil only) of L_m, L_o, and L_b are 76 μm \times 76 μm, 120 μm \times 20 μm, and 125 μm \times 125 μm, respectively. Their quality factors are 8.6, 8, and 7, respectively. All of the three single-ended inductors consist of multiple turns and three metal layers. The top metal is aluminum, middle layer is copper, and bottom metal is aluminum as well. The prototype draws 12.6 mA
Fig. 19. Histogram of Monte-Carlo simulation results of (a) gain at 1 GHz, (b) IIP3 at 5 GHz, (c) NF at 2 GHz, (d) NF at 10 GHz, and (e) NF at 20 GHz.

Fig. 20. Die photograph of the fabricated wideband LNA.

from a supply voltage of 1.6 V, consuming a total power of 20.1 mW.

As shown in Fig. 21, we performed the normal S-parameter measurement using an Agilent PNA-X Vector Network Analyzer (N5245A). The NF measurement was conducted on probe-station using Agilent PNA-X N5245A. Note that the NF measurement option (option 029) needs to be installed in N5245A to measure NF. The cable setup is the same as the normal S-parameter measurement. The basic measurement steps are: 1) setup a noise channel, such as noise frequency, test frequency, and test power, on PNA; 2) execute a noise calibration using E-cal module and noise source (346 C); and 3) measure NF which is just the same way as the normal S-parameter measurement.

Fig. 22 compares the calculated, simulated, and measured results of S_{11}, S_{21}, and NF of the proposed wideband LNA. S_{11} is below -10 dB up to 23 GHz [see Fig. 22(a)]. S_{11} shows a dip at around 19 GHz, indicating the effect of the π network. In Fig. 22(b), the peak of S_{21} is 12.8 dB with a 3-dB BW of 19 GHz, from 1 to 20 GHz. Across the above frequency range, the in-band gain variation is 2.8 dB; nevertheless, its variation is 1.9 dB in post-layout simulation. Measured NF_{min}
and \(\text{NF}_{\text{max}} \) are 3.3 dB at 3.5 GHz and 5.3 dB at 13.5 GHz, illustrated in Fig. 22(c), respectively. In-band variation of NF is only 2 dB from 1 to 20 GHz, which is competitive with the state of the art. The calculated results based on (4), (9), and (16) derived in Section III are consistent with the simulated and measured results. Fig. 23(a) shows that the measured IIP3 is 5.8 dBm, when two-tone signals with equal power levels at 10 and 10.1 GHz are applied to the prototype. Fig. 23(b) shows that the measured IIP3 at different center frequencies (2, 5, 10, 15, and 20 GHz) with space \(\Delta f = 100 \) MHz is always larger than 0 dBm. Measured \(P_{1\text{dB}} \) is also plotted with a range of \(-13\) to \(-8\) dBm across the BW. The difference between IIP3 and \(P_{1\text{dB}} \) is slightly larger than the conventional 10 dB in theory, due to the above-mentioned IIP3 improvement technique, which does not necessarily improve \(P_{1\text{dB}} \). The results also show a good linearity performance across a wide range of frequencies. The group delay based on the measured S-parameter is plotted in Fig. 24. It shows a low minimum group delay of 26 ps at 6.5 GHz and a maximum group delay of 75 ps at 18 GHz.

Table II benchmarks the performance of our proposed wideband LNA with the prior works. The prototyped wideband LNA has an NF flatness of 0.1 dB/GHz, which is competitive with other previous wideband LNAs in Table II. NF flatness is characterized as \((\text{NF}_{\text{max}} - \text{NF}_{\text{min}})/\text{BW} \), which represents how fast NF increases over a certain range of frequency. Although Chang and Shawn [6] reported a super NF flatness, it needs a larger area and an off-chip bias-T as an RF choke at the output, which is usually infeasible in a full receiver integration. This work also has a moderately low NF, better IIP3, and more compact area compared to other LNAs whose
<table>
<thead>
<tr>
<th>Tech.</th>
<th>Freq. Range (GHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>NF Flat. (dB/\text{GHz})</th>
<th>IIP3 (dBm)</th>
<th>Power (mW)</th>
<th>Area (mm2)</th>
<th>FOM$_1$</th>
<th>FOM$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Work</td>
<td>65nm</td>
<td>1 – 20</td>
<td>12.8</td>
<td>3.3 – 5.3</td>
<td>0.10</td>
<td>5.8</td>
<td>20.3</td>
<td>0.096</td>
<td>22.7</td>
</tr>
<tr>
<td>[6] TMTT’10</td>
<td>130nm</td>
<td>0.1 – 14</td>
<td>12.4</td>
<td>2.7 – 3.7</td>
<td>0.07</td>
<td>0</td>
<td>21</td>
<td>0.009</td>
<td>10.1</td>
</tr>
<tr>
<td>[7] TMTT’10</td>
<td>90nm</td>
<td>1.6 – 28</td>
<td>10.7</td>
<td>2.9 – 3.2</td>
<td>0.01</td>
<td>4</td>
<td>21.6</td>
<td>0.14</td>
<td>20.9</td>
</tr>
<tr>
<td>[8] RFIC’09</td>
<td>90nm</td>
<td>DC – 22.1</td>
<td>10.7</td>
<td>4.3 – 6.6</td>
<td>0.10</td>
<td>-2.67</td>
<td>8.4</td>
<td>0.131</td>
<td>9.1</td>
</tr>
<tr>
<td>[9] MWCL’09</td>
<td>90nm</td>
<td>0.1 – 20</td>
<td>12.7</td>
<td>3.3 – 5.5</td>
<td>0.11</td>
<td>-2.5</td>
<td>20.4</td>
<td>0.35</td>
<td>6.4</td>
</tr>
<tr>
<td>[23] ISSCC’09</td>
<td>130nm</td>
<td>DC – 12</td>
<td>15</td>
<td>2.3 – 4.5</td>
<td>0.18</td>
<td>1</td>
<td>26</td>
<td>0.38</td>
<td>13.4</td>
</tr>
<tr>
<td>[24] TMTT’11</td>
<td>90nm</td>
<td>3.0 – 10</td>
<td>12.5</td>
<td>3.0 – 7.0</td>
<td>0.57</td>
<td>-3</td>
<td>7.2</td>
<td>0.64</td>
<td>6.3</td>
</tr>
<tr>
<td>[25] TMTT’13</td>
<td>180nm</td>
<td>2.2 – 12.2</td>
<td>13</td>
<td>1.9 – 2.6</td>
<td>0.07</td>
<td>-0.1</td>
<td>7.4</td>
<td>1.11</td>
<td>20.6</td>
</tr>
<tr>
<td>[26] CICC’08</td>
<td>130nm</td>
<td>0.8 – 10.6</td>
<td>16</td>
<td>3.4 – 5.6</td>
<td>0.22</td>
<td>1.6</td>
<td>14.4</td>
<td>0.84</td>
<td>14.4</td>
</tr>
<tr>
<td>[27] MWCL’17</td>
<td>65nm</td>
<td>16 – 30.8</td>
<td>10.2</td>
<td>3.3 – 5.7</td>
<td>0.16</td>
<td>-0.5</td>
<td>12.4</td>
<td>0.18</td>
<td>9.6</td>
</tr>
<tr>
<td>[28] MWCL’17</td>
<td>65nm</td>
<td>7.6 – 29</td>
<td>10.7</td>
<td>4.5 – 5.6</td>
<td>0.05</td>
<td>1.4</td>
<td>12.1</td>
<td>0.3</td>
<td>13.3</td>
</tr>
<tr>
<td>[15] JSSC’17</td>
<td>180nm</td>
<td>0.1 – 2</td>
<td>17.5</td>
<td>2.9 – 3.5</td>
<td>0.31</td>
<td>10.6</td>
<td>21.3</td>
<td>0.63</td>
<td>18.2</td>
</tr>
<tr>
<td>[31] TCASI’13</td>
<td>180nm</td>
<td>DC – 1.3</td>
<td>10</td>
<td>2.9 – 3.2</td>
<td>0.23</td>
<td>7.5</td>
<td>18</td>
<td>0.07</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Upper f_{sat} larger than 10 GHz

<table>
<thead>
<tr>
<th>Tech.</th>
<th>Freq. Range (GHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>NF Flat. (dB/\text{GHz})</th>
<th>IIP3 (dBm)</th>
<th>Power (mW)</th>
<th>Area (mm2)</th>
<th>FOM$_1$</th>
<th>FOM$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[11] TCASI’19</td>
<td>65nm</td>
<td>0.5 – 7</td>
<td>16.8</td>
<td>2.9 – 3.8</td>
<td>0.14</td>
<td>-4.5</td>
<td>11.3</td>
<td>0.044</td>
<td>3.44</td>
</tr>
<tr>
<td>[20] TCASI’17</td>
<td>90nm</td>
<td>2.0 – 5.0</td>
<td>13</td>
<td>6.0 – 8.0</td>
<td>0.67</td>
<td>-9.5</td>
<td>1.8</td>
<td>0.72</td>
<td>-11.1</td>
</tr>
<tr>
<td>[32] JSSC’16</td>
<td>130nm</td>
<td>0.6 – 4.2</td>
<td>14</td>
<td>4.0 – 9.0</td>
<td>1.39</td>
<td>-10</td>
<td>0.25</td>
<td>0.39</td>
<td>13.6</td>
</tr>
</tbody>
</table>

NC technique used

<table>
<thead>
<tr>
<th>Tech.</th>
<th>Freq. Range (GHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>NF Flat. (dB/\text{GHz})</th>
<th>IIP3 (dBm)</th>
<th>Power (mW)</th>
<th>Area (mm2)</th>
<th>FOM$_1$</th>
<th>FOM$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[29] MWCL’17</td>
<td>SiGe 130nm</td>
<td>0.3 – 15</td>
<td>37.3</td>
<td>1.8 – 2.2</td>
<td>0.03</td>
<td>-27.3a</td>
<td>52</td>
<td>0.46</td>
<td>-22.5</td>
</tr>
<tr>
<td>[30] TMTT’11</td>
<td>GaAs 500nm</td>
<td>0.5 – 43.5</td>
<td>8.5</td>
<td>4.2 – 22</td>
<td>0.41</td>
<td>9.5a</td>
<td>225</td>
<td>2</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Non-CMOS

<table>
<thead>
<tr>
<th>Tech.</th>
<th>Freq. Range (GHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>NF Flat. (dB/\text{GHz})</th>
<th>IIP3 (dBm)</th>
<th>Power (mW)</th>
<th>Area (mm2)</th>
<th>FOM$_1$</th>
<th>FOM$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[33] VLSI’15</td>
<td>90nm</td>
<td>0.1 – 7.0</td>
<td>12</td>
<td>5.5 – 6.5</td>
<td>0.14</td>
<td>-9</td>
<td>0.75</td>
<td>0.23</td>
<td>5.2</td>
</tr>
<tr>
<td>[34] TCASI’18</td>
<td>130nm</td>
<td>0.7 – 4.6</td>
<td>10.8</td>
<td>3.5 – 4.5</td>
<td>0.26</td>
<td>5</td>
<td>6.16</td>
<td>0.18</td>
<td>14.9</td>
</tr>
<tr>
<td>[38] TMTT’08</td>
<td>90nm</td>
<td>0.2 – 9.0</td>
<td>10</td>
<td>4.2 – 7.8</td>
<td>0.41</td>
<td>-8</td>
<td>20</td>
<td>0.066</td>
<td>-17.4</td>
</tr>
<tr>
<td>[39] TMTT’16</td>
<td>90nm</td>
<td>0.1 – 2.2</td>
<td>12.3</td>
<td>4.9 – 6.0</td>
<td>0.52</td>
<td>-9.5</td>
<td>0.4</td>
<td>0.005</td>
<td>1.3</td>
</tr>
</tbody>
</table>

a Calculated from OIP3, A Calculated from P_{dd}.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 01,2020 at 05:01:26 UTC from IEEE Xplore. Restrictions apply.
fiers, it seems that the NC technique introduces some extra of the art. The achieved FOM 1 of 22.7 GHz for the wideband LNA has either very high gain [29] or very wide BW [30]. However, their FOM is inferior to our work due to their poor linearity or high power consumption. In Table II, two types of FOMs are employed to evaluate the overall performance of the wideband LNA

\[
FOM_1 = 20 \log_{10} \left(\frac{\text{IIP}_3 \text{[mW]} \times \text{Gain[lin]} \times \text{BW[GHz]}}{P_{dc} \text{[mW]} \times (\text{NF}_{\text{min}} \text{[dB]} - 1)} \right)
\]

\[
FOM_2 = 20 \log_{10} \left(\frac{\text{IIP}_3 \text{[mW]} \times \text{Gain[lin]} \times \text{BW[GHz]}}{P_{dc} \text{[mW]} \times \text{NF Flatness[dB/GHz]}} \right) \]

FOM$_1$ in [8] and [12] uses the lowest NF while FOM$_2$ takes NF flatness into account. Also, Guo et al. [15] and Im [31] employ linearity enhancement techniques and achieve better IIP3 than our work; however, the proposed wideband LNA achieves a very wide BW, which is more than 10× wider than the BW of [15] and [31]. To summarize Table II, our proposed wideband LNA is a very promising topology due to very wide BW, low-and-flat NF, high linearity, and better overall FOMs.

VII. CONCLUSION AND BRIEF DISCUSSION ON NC TECHNIQUE

This article reported a novel wideband LNA architecture that targets high linearity and broadband amplification. The effects of the dual-complementary topology, feedback resistor, and triple-path noise cancellation have been analyzed in detail. Realized in 65-nm CMOS, the prototype LNA measures a BW of 19 GHz, an NF of 3.3 dB at 3.5 GHz, and an IIP3 of 5.8 dBm at ~10 GHz while achieving a very compact die area of 0.096 mm2. The measurement agrees well with the calculation and simulation. The achieved FOM$_1$ of 22.7 GHz and FOM$_2$ of 43.8 GHz are favorably comparable to the state of the art.

Due to the introduction of the additional auxiliary amplifiers, it seems that the NC technique introduces some extra noise. Regarding recent works [13]–[15] and our work, the additional circuitry is not only used to cancel noise from input matching transistors but also utilized to improve IIP3. The feed-forward NC technique is also employed in radio frequency receiver designs [35]–[37]. Murphy et al. [35] and Wu et al. [36] implemented switches to turn on/off the NC function and so as to obtain the improvement of NF, with the help of the NC technique. By recalling Fig. 18, we can observe that the temperature shows a greater impact on NF, while the process-corner variations are slightly affecting NF performance. As shown in Fig. 19, MC simulations show that the standard deviation of NF is <0.2 dB, ranging from 2 to 20 GHz. However, to further control noise cancellation, especially its dependence on the temperature, digital calibration could be implemented into the circuit.

References

D. Im, I. Nam, and K. Lee, “A low power broadband differential
low noise amplifier employing noise and IM3 distortion cancellation

H. Lee, T. Chung, H. Seo, I. Choi, and B. Kim, “A wideband differ-
ential low-noise-amplifier with IM3 harmonics and noise canceling,”
Jan. 2015.

noise-canceling low-noise amplifier with high linearity,” IEEE Microw.

M. El-Nozahi, A. A. Helmy, E. Sánchez-Sinencio, and K. Entesari,
“An inductor-less noise-cancelling broadband low noise amplifier with
composite transistor pair in 90 nm CMOS technology,” IEEE J. Solid-

A. R. A. Kumar, B. D. Sahoo, and A. Dutta, “A wideband 2–5 GHz
noise canceling subthreshold low noise amplifier,” IEEE Trans. Circuits

low-noise-amplifier exploiting thermal noise canceling,” IEEE J. Solid-

B. S. Kim, D. Im, J. Choi, and K. Lee, “A highly linear 1 GHz
1.3 dB NF CMOS low-noise amplifier with complementary transcon-
ductance linearization,” IEEE J. Solid-State Circuits, vol. 49, no. 6,

Y. Wang and A. Hajimiri, “A compact low-noise weighted distributed
amplifier in CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)

R.-F. Ye, T.-S. Horng, and J.-M. Wu, “Two CMOS dual-feedback
common-gate low-noise amplifiers with wideband input and noise
matching,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10,

S. Lou and H. C. Luong, “A 0.8 GHz–10.6 GHz SDR low-noise amplifier
in 0.13-μm CMOS,” in Proc. IEEE Custom Integr. Circuits Conf.,

P. Qin and Q. Xue, “Compact wideband LNA with gain and input
matching bandwidth extensions by transformer,” IEEE Microw. Wireless

P. Qin and Q. Xue, “Design of wideband LNA employing cascaded
complimentary common gate and common source stages,” IEEE Microw.

S. Zeinolabedinyadeh, A. Ulusoy, M. Oakley, N. Lourengo, and J.
Cressler, “A 0.3–15 GHz SiGe LNA with >1 THz gain-bandwidth
product,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4,

H. Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh, and
Y.-C. Wang, “Design and analysis of a DC–43.5-GHz fully integrated
distributed amplifier using GaAs HEMT–HBT cascode gain stage,”

D. Im, “A 9-dBm output P1dB, active feedback CMOS wideband LNA
for SAW-less receivers,” IEEE Trans. Circuits Syst. II, Exp. Briefs,

M. Parvizi, K. Allidina, and M. N. El-Gamal, “Short channel output
conductance enhancement through forward body biasing to realize a
0.5 V 250 μA 0.6–4 GHz current-reuse CMOS LNA,” IEEE J. Solid-

M. Parvizi, K. Allidina, and M. N. El-Gamal, “A sub-nW, ultra-low-
voltage, wideband low-noise amplifier design technique,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1111–1122,
Jun. 2015.

T. Ma and F. Hu, “A wideband flat gain low noise amplifier using
active inductor for input matching,” IEEE Trans. Circuits Syst. II,
TCSSII.2018.2872068.

D. Murphy et al., “A blocker-tolerant, noise-canceling receiver suit-
able for wideband wireless applications,” IEEE J. Solid-State Circuits,

H. Wu, M. Mikhemar, D. Murphy, H. Darabi, and M.-C. Chang,
“A blocker-tolerant inductor-less wideband receiver with phase and
thermal noise cancellation,” IEEE J. Solid-State Circuits, vol. 50, no. 12,

H. Hedayati, W.-F. A. Lau, N. Kim, V. Aparin, and K. Entesari,
“A 1.8 dB NF blocker-filtering noise-canceling wideband receiver with
shared TIA in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50,

CMOS LNAs using modified resistive feedback techniques with chip-
on-board packaging,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8,

wideband inductorless CMOS LNA with tunable active shunt-feedback,”
IEEE Trans. Microw. Theory Tech., vol. 64, no. 6, pp. 1843–1853,
Pui-In Mak (S’00–M’08–SM’11–F’19) received the Ph.D. degree from the University of Macau (UM), Macau, China, in 2006. He is currently a Full Professor with the Faculty of Science and Technology, Department of ECE, UM, where he is also the Associate Director of research with the State Key Laboratory of Analog and Mixed-Signal VLSI. His current research interests include analog and radio frequency (RF) Circuits and Systems (CAS) for wireless and multidisciplinary innovations.

Dr. Mak was a Member of the Board of Governors of the IEEE Circuits and Systems Society (CAS) from 2009 to 2011 and an Editorial Board Member of the IEEE Press from 2014 to 2016. He was a Member of Board of Governor of the IEEE CAS from 2009 to 2011. He has been a fellow of the U.K. Institution of Engineering and Technology (IET) for contributions to radio frequency and analog circuits since 2019. He has been serving as the Chair for the Distinguished Lecturer Program since 2018. He was the Technical Program Committee (TPC) Vice Chair of ASP-DAC in 2016. He was an Associate Editor of the IEEE TRANSACTIONS ON CAS I from 2010 to 2011 and 2014 to 2015, the IEEE TRANSACTIONS ON CAS II from 2010 to 2013, a Senior Editor of the IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CAS from 2018, and the IEEE SOLID-STATE CIRCUITS LETTERS since 2018. He was the Distinguished Lecturer of the IEEE CAS from 2014 to 2015 and the IEEE Solid-State Circuits Society from 2017 to 2018. He has been elected as an Overseas Expert of the Chinese Academy of Sciences since 2018.

Rui P. Martins (M’88–SM’99–F’08) was born in April 1957. He received the bachelor’s (5 years), master’s, and Ph.D. degrees, and the Habilitation for Full Professor in electrical engineering and computers from the Department of Electrical and Computer Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal, in 1980, 1985, 1992, and 2001, respectively.

Since October 1980, he has been with the Department of Electrical and Computer Engineering (DECE), IST, Universidade de Lisboa, where he has been on leave since 1992. Since 2013, he has been with IST, Universidade de Lisboa. He is currently with the Department of Electrical and Computer Engineering, Faculty of Science and Technology (FST), University of Macau (UM), Macau, China, where he has been a Chair Professor since August 2013. In FST, he was the Dean of the Faculty from 1994 to 1997. Since 1997, he has been the Vice Rector of the University of Macau, Macau, China. He was the Co-Founder of Synopsys, Macau, from 2001 to 2002. In 2003, he created the Analog and Mixed-Signal VLSI Research Laboratory, UM, elevated in January 2011 to the State Key Laboratory of China (the first in Engineering in Macau), being the Founding Director. Since September 2008, after the reform of the UM Charter, he has been nominated after open international recruitment, and reappointed in 2013, as the Vice Rector of research until August 2018. He has co-authored six books and nine book chapters; holds 18 patents, USA (16) and Taiwan (2); 377 articles, in scientific journals (111) and conference proceedings (266); and other 60 academic works, in a total of 470 publications. Within the scope of his teaching and research activities, he has taught 21 bachelor’s and master’s courses and, in UM, has supervised (or co-supervised) 40 theses, master’s (21), and Ph.D. (19).

Dr. Martins was elected, unanimously, as a Corresponding Member of the Portuguese Academy of Sciences, Lisbon, Portugal, being the only Portuguese Academician living in Asia in July 2010. He was a member of the IEEE Circuits and Systems Society (CASS) Fellow Evaluation Committee in 2013 and 2014, and the CASS Representative in the Nominating Committee, for the election in 2014, of Division I (CASS/EDS/SSCS), and the Director of the IEEE. He was a Nominations Committee Member in 2016. He was the Founding Chairman of the IEEE Macau Section from 2003 to 2005 and the IEEE Macau Joint-Chapter on CAS/Communications (COM) from 2005 to 2008 (2009 World Chapter of the Year of IEEE CASS). He was a recipient of the two government decorations: the Medal of Professional Merit from Macao Government (Portuguese Administration) in 1999 and the Honorary Title of Value from Macau, China (Chinese Administration), in 2001. He was the General Chair of the 2008 IEEE Asia-Pacific Conference on CAS—APCCAS’2008. He was the General Chair of the ACM/IEEE Asia South Pacific Design Automation Conference—ASP-DAC’2016. He is currently the Chair of the IEEE Fellow Evaluation Committee (class of 2018), both of IEEE CASS. He was an Associate Editor of the IEEE TRANSACTIONS ON CAS II: EXPRESS BRIEFS from 2010 to 2013, nominated as a Best Associate Editor of T-CAS II from 2012 to 2013. Since 2011, he has been the Vice President (World) Regional Activities and Membership of IEEE CASS from 2012 to 2013. He was the Vice President for Region 10 (Asia, Australia, and the Pacific) of IEEE CASS from 2009 to 2011.