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Abstract—This paper presents a time-interleaved pipelined-SAR
ADC with on-chip offset cancellation technique. The design reuses
the SAR ADC to perform offset cancellation, thus saving calibra-
tion costs. The inter-stage gain of 8 is implemented in a 6-bit ca-
pacitive DAC with a flip-around operation. A capacitive attenua-
tion used in both the first and second DACs significantly reduces
the power dissipation and optimizes conversion speed. The detailed
circuit implementation of the subthreshold op-amp is discussed,
and the possible limits caused by nonidealities are analyzed for a
proper correction in the design. These include the inter-stage-gain
error and various channel mismatches of offset, gain, and timing.
Measurements of a 65-nm CMOS prototype operating at 160 MS/s
and 1.1-V supply show an SNDR of 55.4 dB and 2.72 mW total
power consumption.

Index Terms—Decoupled flip-around MDAC, offset-cancella-
tion, pipelined-SAR ADC, -attenuator.

I. INTRODUCTION

T HE POWER effectiveness of a traditional pipelined
analog-to-digital converter (ADC) [1]–[4] is not as good

as the successive approximate register (SAR) ADC [5]–[8] with
10–12-bit and 50–100-MS/s specifications. This is attributed to
the power consumed by the opamp(s). The problem becomes
even more evident in nanometer CMOS technologies since
high-gain opamp(s) designed with shrinking values of
and intrinsic transistor gain consume significant power. SAR
ADCs [9], [10] rely on the passive element (switched-capacitor
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circuit) and one comparator to perform the binary-searched
feedback and comparison. The dynamic operation achieves
ultralow-power efficiency but the capacitor mismatches and the
high accuracy comparator, where the inputs difference of less
than half of the least significant bit (LSB) is determined, limit
its resolution. On the other hand, pipelined-SAR ADCs [11],
[12] are architectures potentially capable of achieving both high
conversion efficiency and resolution, because they use a lower
number of opamp(s). The architecture uses two-step pipelined
SAR ADCs to prevent high power consumption by the flash
ADC in the conventional pipelined ADC. A proper choice of
the inter-stage gain trades off the requirements of opamps and
increased resolution of the second stage, thus optimizing power
consumption. However, its speed benefit is not as significant as
the SAR ADC as it needs an additional residue amplification
phase. To further improve the conversion speed, a time-inter-
leaved (TI) scheme was utilized in pipelined SAR architecture
[13], [14] to release its speed bottleneck with competitive lower
power dissipation. But, there are three key design limitations in
the TI-pipelined-SAR ADC caused by comparator’s offset, the
unavailability of low-power flip-around MDACs and the static
power requirements of the reference voltage generator.

The use of calibration improves the ADC design. This is
particularly beneficial with nanometer CMOS technologies
as they enable fast and effective digital logic processing. The
analog-domain calibration corrects the nonlinearities of the
ADC by properly adjusting circuit inaccuracies. Some SAR
ADCs [15], [16] propose on-chip calibration of the conversion
error caused by comparator offset and digital-to-analog con-
verter (DAC) mismatches. However, power efficiency, area,
complexity of the calibration circuit, as well as its adaptability
for the on-chip implementation are of particular concern. For
offset corrections less than 6 b, an analog method, such as
a ring-counter-based offset calibration [15], [17] or a digital
method like background averaging [13] are relatively simple
and accurate. However, for medium resolutions of 8–10 b, the
calibration usually requires on-chip complex logic algorithms
that consume large area and power. Thus, for achieving low
power consumption, it would be necessary to use methods that
simultaneously explore analog and digital solutions to simplify
hardware and attain design flexibility.

A pipelined-SAR architecture uses the first-stage capacitive
DAC (CDAC) to perform residue amplification. However, the
capacitive ratio of residue amplification increases with the reso-
lution of the first-stage DAC array. Moreover, with the high-res-
olution front-end CDAC, using the flip-around MDAC becomes
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Fig. 1. Overall ADC architecture.

problematic. Previous works either employ a power-hungry re-
sistive ladder that helps the limited resolution in the CDAC to
enable the flip-around multiplying DAC (MDAC) [13] or an ad-
ditional resetting capacitor required for a non-flip-around ampli-
fication with reduced feedback factor [11], [12], [14].

Typically, the reference buffers or resistive ladder of
pipelined-SAR ADCs generate the reference voltages in the
first- and second-stage SAR conversions [12]–[14]. This con-
sumes large static power and increases RC settling time. In
[13], the reference generation consumes 60% static power
dissipation and significantly limits the conversion speed.

This paper presents a TI-pipelined-SAR ADC [18] which ob-
tains remarkable power effectiveness for high conversion speed.
This is achieved by using three strategies. First, the ADC cor-
rects the offset with a self-embedded offset-cancellation scheme
by reusing the second-stage SAR ADC. The calibration range
of the offset can go up to the full-scale of the second stage, de-
manding very little area and digital power. Second, the capac-
itive array of the first-stage SAR serves a flip-around MDAC,
which integrates the residual charge on a fraction of the array
fed back according to the desired residue gain ratio. This solu-
tion improves the feedback factor. Finally, the design of CDACs
in the first-and second-stage SAR ADCs is adjusted to perform
reference-buffer-free SA conversion. By using the capacitive

-attenuator, the reference supply voltage is scaled down to
match the required reference ranges for both first- and second-
stage SAR ADCs. Time-interleaving can multiply the speed of
the ADC above the technology limits but it is susceptible to var-
ious types of channel mismatches of offset, gain, and timing.
The experimental measures of a 65-nm CMOS prototype verify
the effectiveness of the methods with state-of-the art results for
medium resolution and conversion speed in the 100–200-MS/s
range.

II. ADC ARCHITECTURE

Fig. 1 shows the ADC architecture and timing diagram. The
scheme is made up of two interleaved pipelined-SAR ADCs
with a residue amplifier shared by the two channels (similar to
[13]). The channels use 6-b and 7-b SAR ADCs, respectively
(2 b of the second stage are for offset cancellation) with 1 b over-
lapping for digital error correction. The first-stage SAR con-
verts the coarse 6-b code and generates the residue at the
top-plate of the DAC, which is amplified by 8 to generate the
input of the second-stage DAC. The second SAR operates in
a pipeline fashion while the first stage starts a new cycle. The
6-b coarse code and the 5-b fine codes enter the digital correc-
tion logic to build the final 10-b output. The two extra bits of
the second stage used for offset calibration do not increase the
extra time requirement as the sample and hold (S&H) phase is
not necessary for second-SAR conversion. Each channel oper-
ates at 80 MS/s with an equivalent duration of 6.2 ns each to
perform the residue amplification and SA conversion.

III. DESIGN CONSIDERATIONS

Time-interleaved pipelined-SAR architecture augments the
conversion rate but the channel mismatches could impair per-
formance. This issue can be addressed with various methods.
Sharing the inter-stage amplifier avoids the offset mismatch in
residual generation. The use of digital error correction relaxes
the conversion accuracy of the first-stage SA decisions. How-
ever, the mismatches of gain, offset, and timing degrade the
conversion linearity and should be considered in the circuit de-
sign. Moreover, an inter-stage gain of 8 is used for high-speed
consideration. Since the power budget is correlated with the
topology of the opamp, the open-loop gain and GBW are prop-
erly optimized.
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TABLE I
COMPARISON OF NONFLIP-AROUND AND FLIP-AROUND OPERATIONS

A. Gain Mismatches

Due to the shared opamp, the gain mismatches in this work
are mainly caused by the capacitor mismatches of the first- and
second-stage CDACs. Assuming that the channel gain-mis-
match components are independent, identically distributed
Gaussian random variables with zero mean and a standard
deviation of , the SNDR due to the gain mismatch can be
derived as [19]

(1)

where is the number of TI channels. Considering that the
limited quantization noise of a 10-b ADC is 62 dB, the expected
SNDR needs to be designed with a value higher than this level.
To achieve 66-dB SNDR, the should be less than 0.07%.
In a TI-pipelined-SAR architecture, the gain mismatch derives
from both the first and second stages, and it can be represented
as

(2)

where and are the standard deviations of the
first-and second-stage gain-mismatch components, where

is the inter-stage gain. Accordingly, the and
need to be less than 0.049% and 0.39%, respectively.

B. Offset Mismatches

The first-stage comparators, the opamp and the second-stage
comparators, generate offsets in a TI pipelined-SAR ADC.
Since the opamp is shared by two channels and the use of digital
error correction relaxes the sum of the input-referred offset
(including the first-stage comparators’ and opamp’s offset
requirement), it will not cause any conversion nonlinearity, as
its value is designed to be within 7 b that is 8.6 mV (the
full-scale version of the ADC is 1.1 V and 8 offset is
required to be less than 1/4 of 68.75 mV ). When

its value exceeds the request, a large conversion distortion
will occur due to the offset saturated at the second-stage SAR
conversion. On the other hand, the offsets of the second-stage
comparators cause offset mismatch tones in the TI-pipelined
SAR ADC, if they are not precisely estimated and calibrated.
Assuming the channel offset-mismatch components and a
standard deviation of , the SNDR due to input-referred
offset mismatch of the second-stage
SAR ADC can be calculated as [19]

(3)

where equal to 1.1 is the amplitude of the input signal.
To achieve 66-dB SNDR, the should be less than 4.4
mV. This design uses a self-embedded offset cancellation which
compensates for the second-stage comparator offset to less than
9 b at a very low cost. The method is described in the next
section.

C. Timing Mismatch

Timing mismatch or periodic timing skew in TI systems
refers to the mismatch in the sampling instant inside the in-
dividual channel. Inaccurate sampling clock edges generated
by the mismatch in the clock generation paths give the rise to
them. The SNDR thus caused can be calculated as [19]

(4)
where represents the standard deviation of the timing mis-
match in unit of second and is the input frequency. To achieve
66-dB SNDR with 80 MHz, the needs to be suppressed
to less than 1.4 ps. Timing mismatch is difficult to be compen-
sated due to its signal-dependent dynamic nature. In this design,
the timing mismatch is tolerated by design constraint, and no
timing mismatch calibration is utilized.
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TABLE II
DESIGN CONSIDERATIONS OF THE OPAMP AND SECOND-STAGE SAR WITH RESPECT TO DIFFERENT INTER-STAGE GAIN

D. Open-Loop Gain and GBW

The pipelined-SAR architecture uses the first-stage CDAC to
perform both 6b conversion and the residue amplification. The
inter-stage gain is the ratio of the total array capacitance and
the feedback capacitor. As shown in Table I, a nonflip-around
amplification [11], [12], [14] by 8 would require using an extra
capacitor 8C, which is 1/8 of the total array capacitance 64C.
Therefore, the feedback factor of a nonflip-around operation

is 1/9. The increasing of the feedback factor improves
the open-loop gain and closed-loop bandwidth (CLBW) of the
opamp, which is essential for high-speed operation. In this de-
sign, by implementing a flip-around MDAC, the feedback factor

is improved from 1/9 to 1/8. The circuit details pertaining
to this will be presented next. The design comparison of non-
flip- and flip-around operations are illustrated in Table I. The
total sampling capacitances in both cases, which are determined
only by the noise, are equivalent. Assuming that to sat-
isfy 10-b noise the required sampling capacitance is 640
fF. Accordingly, the flip-around operation only needs half of the
unit capacitance of the nonflip-around one. The nonflip-around
operation gives rise to its total MDAC capacitance, due to the
implementation of the extra capacitor of 8C. The benefit of the
flip-around operation becomes more significant, as lower is
implemented. For example, with of 16, the is increased
by only 5% as compared to the nonflip-around one, while the
improvement of goes up to 20% with a G of 4.

The finite dc gain of the required opamp is competitively
relaxed by implementing an inter-stage gain of 8. Sufficient
dc gain of the opamp is required to suppress the gain error

within (the 8 residue gain relaxes
the accuracy requirement of the second-stage SAR from

to ). Consequently, with
after first-stage 6-b quantizing, of 8 and of 1/8, must
not be less than 48 dB. However, considering the residue gain
errors caused by the opamp’s input parasitic that degrades the
feedback factor as well as the memory effect, adequate design
margin is required.

With an overall conversion speed of 160 MHz, the final set-
tling error of the opamp’s output must be less than at
the end of the amplification period of 6.2 ns. Correspondingly,
the GBW of this design should be 712 MHz.

The 8 inter-stage gain is designed corresponding to the
power optimization of the opamp and the second-stage SAR.
Table II illustrates the design tradeoffs between the opamp’s

requirement and second-stage conversion accuracy with re-
spect to different residue gain. The opamp’s power is estimated
in a telescopic configuration and its output loading main-
tains the same value due to limited unit capacitance of the
second-stage 6-b DAC. The lower inter-stage gain improves
the feedback factor relaxing the opamp’s GBW as target for
the same closed-loop bandwidth. Therefore, power dissipa-
tion can be significantly reduced. However, the reduction of
inter-stage gain demands the higher conversion accuracy of
the second-stage SAR ADC as well as the offset and gain
mismatches requirements. Compared with the design of the
opamp, a medium resolution ( 9 b) high-speed SAR ADC is
comparatively easy to achieve with very low power dissipation.
Because it is digital and the switching power remains constant
as a result of performing equivalent number of bit cycling, only
the analog power from the comparator increases according to
the desired conversion accuracy, which is dynamic and much
lower than the one required by the opamp. Another benefit
of implementing a lower residue gain is the reduction of the
output swing of the opamp, which allows for low-power and
high-speed topology as in the telescopic configuration to be
used. Consequently, this design uses an 8 residue gain to
balance the power drawn by the opamp and the second-stage
SAR, which allows the pipelined-SAR architecture to achieve
both high conversion speed and efficiency.

IV. CIRCUIT DESCRIPTION

A. First-Stage Capacitive DAC With Decoupled
Flip-Around MDAC

Fig. 2 shows the first-stage SAR architecture with the residue
amplification. There are two binary-weighted arrays of capac-
itors (conversion) and (amplification). Indeed,

also serves during the conversion phase to attenuate
the used reference voltage by a factor of 2. Since the desired

, the method enables us to use the supply voltage
and avoid power hungry generation of , which is sim-
ilar to what was done in [11], [15]. The array uses 64
unity elements; also has 64 elements to attain the 2 at-
tenuation. For amplification, 16 elements of are flipped
around the opamp to realize the amplification.

After the 6-b SA conversion, amplification occurs thanks to
the flip-around MDAC. Forty-eight elements remain in the non-
feedback, and the other 16C are fed back to the opamp’s output.
The residue amplification solely depends on the ratio of
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Fig. 2. First-stage SAR ADC architecture with decoupled flip-around MDAC.

(the total capacitance of the first-stage
CDAC is 128C). The flip around MDAC method is,
generally speaking more effective than the nonflip-around one.
It reduces the total number of capacitors because a fraction of
the array serves as feedback element. Power is reduced because
the feedback factor is more favorable and part of the charge is
already on the fraction of the array connected in feedback. In tra-
ditional flip-around MDAC design [13], the amplification factor
of 8 is heavily linked on the use of a maximum 3-b capacitive
DAC array in the sub-SAR conversion, as a result, an extra 3-b
resistive DAC is required to have a 6-b sub-ADC. In this de-
sign, only the partial feedback capacitor (16C) is flipped, so this
decoupled the link between the sub-DAC and the amplification
factor, allowing a complete 6-b CDAC implementation.

The gain mismatch between two TI channels is determined
by the inherit capacitor matching of the first-stage CDAC. The
value of the unit capacitor is 13 fF 5.6 m 5.6 m leading to
the total sampling capacitance of 1.66 pF single-ended, which
only complies with matching requirements as in Section III-A.
The DAC array was built based on a sandwich capacitor con-
sisting of three metals layers: M2 and M4 for the bottom-plate
and M3 for the top-plate. The bottom-plate enclosing the top-
plate minimizes parasitic capacitance, which yields smaller ca-
pacitance per unit area with higher matching accuracy than the
finger structure [20].

B. Second-Stage Capacitive DAC With -Attenuator

The 8 inter-stage gain makes the residue range equal to 1/8
of the overall input signal. Thus, considering the 1 b used for
digital error correction, the reference voltages of the second
stage must be 1/4 of the ones of the first stage. To generate
the second-stage reference voltage of , the CDAC in the
second stage employs a capacitive attenuator as shown in Fig. 3.
The first split-stage scales down the reference as required by a

lower inter-stage gain of 8, and the 7-b split-DAC determines
the fine 5-b output with an extra 2 b for offset cancellation, as
will be described later. Normally, the 7-b DAC array connected
in series with the attenuation capacitor of 64/31C results in
equivalent output capacitance of 2C. The total equivalent
capacitance of the DAC is 16C. Therefore, the first-split
stage operates as a voltage-divider that scales down the refer-
ence voltage at the comparator’s input by 8. However, the para-
sitic capacitances of the internal and external nodes of the DAC
array cause an inter-stage gain error. This limit is affordable and
its contribution is analyzed in the Appendix. The total capac-
itance needed to fulfill the second-stage noise limit is
177 fF with a unit capacitance of 10.53 fF 5 m 5 m .
The value of the capacitance of (8.9 m 8.9 m equiva-
lent to 31.25 fF) is sized larger to compensate for the gain error
caused by the top-plate parasitic of the CDAC.

As shown in Fig. 3, the residue is sampled at the top-plate
of the DAC during the residue amplification phase . The
switch is sized small to reduce signal-dependent charge in-
jection. Assuming that all the channel charge of the switch is
injected to the second-stage DAC, the worst error difference be-
tween two samples can be calculated as

(5)

where representing is the channel capacitance of
. The output swing of the opamp is , and

the output equivalent capacitance of the DAC is 177 fF. To
guarantee the conversion accuracy, needs to be restricted
to 8b. Accordingly, the needs to be 5 fF. In this design,
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Fig. 3. Second-stage SAR ADC architecture and calibration timing diagram.

an NMOS switch sized with ( ) of 0.54 m 0.06 m is
used that leads to a around 3.6 fF. The large RC time con-
stant of the second-stage sampling network is not problematic
as the amplification phase of 6.2 ns is sufficient for the settling
as the second-stage residue swing is small.

C. Offset-Cancellation Technique

Fig. 3 shows block and timing diagrams of the second-stage
SAR ADC implementing the offset-cancellation technique. It
is a 7-b split DAC array used for both conventional SA con-
version and offset measurement. In the calibration mode, the
input of the stage is set to zero. The conversion accuracy of
the second-stage SAR ADC is 9 b, which is within the cor-
responding offset requirement. The offset value is stored on a
memory and subtracted later during normal SA conversion. As
Fig. 3 outlines when calibration is not active , the
residue is sampled at the top-plate of the DAC by connecting
its bottom-plate to ground during phase . When calibration
is active , the residue amplification phase is
disabled. Both top- and bottom-plates of the DAC are reset to
ground. Since there is no initial charge in the capacitive array,
two inputs of the comparator are set to zero. After 7-b conver-
sion is completed , the output of the DAC ap-
proximates to the comparator offset voltage according to switch
control logic , which are locked and stored by seven flip-flops
as offset code . When the next residue sampling phase

appears, the offset cancellation is achieved by switching a 7-b
complementary offset code at DAC’s bottom-plate instead of
ground, consequently leading to a value of at
the DAC’s output for subsequent 5-b SA comparison.

The technique allows an offset cancellation range up to full
scale of the second-stage and compensates for the offset with
1/4 LSB accuracy. The calibration logic, consisting of dynamic
flip-flops and AND gates, is easily implemented with small area
costs.

V. CIRCUIT IMPLEMENTATION

A. Subthreshold Opamp

Fig. 4 shows the circuit schematic of the single-stage opamp
along with its biasing circuit that is able to track process
variations. Conventional opamp(s) designed in low-voltage
nanometer CMOS technologies normally use two-stage ar-
chitectures. Thanks to the reduced output swing, this design
employs a telescopic configuration with a gain-boosting tech-
nique. The used currents keep transistors in the subthreshold,
thus minimizing overheads and making possible a 1.1-V supply.
Because of the subthreshold operation, the of transistor
M9C is quite close to the overdrive voltage of M5A. This
feature does not increase the headroom as normally required
in gain-boosted telescopic opamp(s). Since the opamp gain
is in the order of , transistor lengths can be reduced
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Fig. 4. Circuit schematic of the opamp.

TABLE III
OPAMP’S PERFORMANCE UNDER PROCESS AND TEMPERATURE VARIATIONS WITH AND WITHOUT M2X

significantly to alleviate the large aspect-ratio requirements of
transistors.

The opamp is biased by the process-tracked biasing network
that makes the opamp insensitive to the supply, process, and ref-
erence current variations under a 1.1-V supply with five stacked
transistors. The current in M0 is mirrored to the main opamp
in M1, and through the biasing circuit in M1W to the gate of
M5U that sets the common-mode feedback (CMFB) reference
to M5A, the goal is to make an accurate current matching in
the main opamp with . To achieve this goal,
two techniques are employed. First, it is mandatory to insert an
M2X (scaled-down version of diff-pair M2A) on top of M1W.
This ensures that the drain voltages of M1 and M1W are iden-
tical, and this current sets the reference to thus making

the main op-amp’s upper and lower current branch equal over
process variations. Second, the gate of M2X is made
process-tracked by M2W, M2V that help suppress the absolute
current variation in M1W, and this is used to also set
the opamp input common-mode through the capacitive DAC in
Fig. 2.

Table III exhibits the simulated operating points over process
variation for the opamp, compared with and without the usage
of M2X. It is clear that the opamp without M2X failed to operate
in certain corners (85 C FF and FS) since the reference current
in the upper branch of the opamp is set as too large, such that
the CMFB pulls the output common mode up to over 900 mV
(this also demonstrates the difficulties in biasing a telescopic
opamp under 1.1 V without any special techniques); while with
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the usage of the M2X the opamp can be reasonably operated
over all corners with the output common-mode properly set (this
means that the upper and lower current branches in the opamp
are quite well set).

Two main issues drive the design of the process-tracked bi-
asing networks. First, the biasing circuit (the middle part of the
opamp in Fig. 4) forms a self-biased loop that may fail to operate
under the condition of . This occurs
when the node is not properly set and pushes the
of M1W all the way down to zero, even if the reference current
is presented. The transistor M5X in startup circuit detects this
zero-current condition and trigger M5W that shorts the nodes

and . This action pulls the down and
up, thus forcing current to flow in M5U and M5V; b) The

two feedback loops in the main opamp and the biasing circuit,
the normal negative feedback (the main CMFB) that controls the
current sources M5A and M5B, and the positive feedback pos-
sibly appearing when the drops, and the drain voltage of
M1W drops, thus reducing the current in M1W and eventually
M5V (due to the channel-length modulation, CLM), which fur-
ther exacerbates the decrease in the . The positive feed-
back is very weak in traditional long-channel devices but can be
noticeable in nanometer CMOS opamp designs. Therefore, the
channel length of M1W must be sufficiently enough to suppress
CLM-induced positive feedback opposing the normal negative
one. As shown in Table III, the open-loop gain and GBW of the
designed opamp are sufficiently large to cover all of the process
and temperature variations, as well as residue gain errors due to
its input parasitic and memory effect. The gain boosting circuit
consumes only 48 A current, which is 7% of the opamp’s total
current 700 A.

The offset of the shared opamp is not cancelled. However,
its value gives rise to conversion distortion. This design obtains
a input-referred opamp’s offset well within 7 b,
which is achieved by using a large input differential pair oper-
ating in the subthreshold region.

B. Comparator and Clock Generator

The comparators [21] used in this work are differential pair
dynamic comparators without pre-amplifier. Fig. 5 shows the
circuit schematic for first-stage SA comparison. During the reset
phase , the transistor M11 is switched off and
the relevant nodes are reset to cancel the memory of the previous
status. When the regeneration phase starts,
M11 is switched on and input transistors M1–M2 force currents
through the back-to-back inverters M3–M5 and M4–M6, which
are connected in series with M1–M2 amplifying the input dif-
ference to a full swing.

The use of very small transistors minimizes the parasitic, thus
obtaining a very high speed even with one LSB imbalance at the
input. However, a small area of the transistors’ gate give rise
to large mismatches and, consequently, a large input referred
offset. Fortunately, the used on-chip offset calibration [22] com-
pensates for that limit and allows a very low power implemen-
tation of the comparators. The unbalanced capacitive loading
method is an effective approach for calibrating the comparator

Fig. 5. Circuit schematic of the first-stage dynamic comparator with its offset
calibration.

Fig. 6. Die microphotograph of the SAR ADC.

offset. Possible mismatches are corrected by changing the ca-
pacitive load of the two branches of the latch. The dynamic be-
havior is therefore unbalanced as required to compensate for
static and dynamic mismatches. During the calibration phase
that is performed synchronously on the first and second stages,
the inputs are shorted to the reference voltage. Under matched
conditions the output would be meta-stable. On the contrary,
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Fig. 7. Measured dynamic performance of the TI pipelined-SAR ADC.

Fig. 8. FFT of the digital output. The input is either a 1.5-MHz or a 70-MHz
sine wave sampled at 160 MS/s.

mismatch gives rise to a logic signal. A simple counter that ad-
justs the binary-weighted capacitor loads uses this signal. The
calibration cycle continues until the comparator output changes
sign.

A master clock of 160 MHz generates the matched inter-
leaved clock phases through a divider-by-2 low-skew clock gen-
erator [23]. The timing skew achieved by this design is 2 ps. The
self-timed loop [7] avoids the need of an external fast master
clock. The conversion period for one bit cycling is around 800 ps
that is sufficient for DAC settling and comparison.

Fig. 9. Measured INL and DNL (a) without offset calibration and (b) with
offset calibration.

TABLE IV
SUMMARY OF PERFORMANCE

VI. MEASUREMENT RESULTS

The 10-b TI pipelined-SAR was implemented in 1P7M
65-nm CMOS with a metal–oxide–metal (MOM) capacitor.
Fig. 6 shows the die photograph; the active area is 0.21 mm .
Fig. 7 exhibits the measured dynamic performance of the
ADC. The ADC achieves a peak SNDR of 55.4 dB at 1.5-MHz
input frequency and 52.6 dB near the Nyquist frequency
(70 MHz) with a conversion rate of 160 MS/s and 1.1-V
supply. Accounting for the foreseeable inter-stage gain error
due to process variation, the expected SNDR degradation is just
0.5 dB without gain calibration. Fig. 8 shows the measured FFT
plotted with 1.5- and 70-MHz inputs at 160-MS/s sampling
rate. The phase slew error between two channels, including the
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TABLE V
COMPARISON WITH STATE-OF-THE-ART WORKS

timing skew and bandwidth mismatch errors cause the timing
mismatch tone higher at high frequency input.

Fig. 9(a) shows static performance when calibration is not
active. The differential nonlinearity (DNL) and integral nonlin-
earity (INL) are quite large at the carry from the second-stage
5-b outputs to the first-stage 6-b outputs as expected. The large
quantize tones happen periodically at the positions where the
second-stage outputs equal to 11111, which is due to the com-
parator offsets that cause the second-stage SA comparison satu-
rated. When calibration is active, as shown in Fig. 9(b), the DNL
and INL improve from 27.6 1 LSB to 0.46 0.31 LSB
and 16.7/LSB 9 to 1.6/ 1.7 LSB, respectively.

Table IV summarizes the overall measured performance of
the ADC. The analog power consumption drawn by the S/H,
DAC, comparators, and opamp is 1.35 mW. The digital power
consumed by the SAR logic, offset calibration, and clock gen-
erator is 1.37 mW. The total power consumption is 2.72 mW at
160 MS/s from a 1.1-V supply. The figure of merit (FoM) calcu-
lated as is 50 fJ/conv.-step. Table V
illustrates a benchmark with state-of-the-art high-speed ADCs.
This work achieves the lowest FoM among pipelined-SAR
ADCs, as well as the high-speed 100 MS/s and high-res-
olution ( 10 b) ADCs.

VII. CONCLUSION

A 10-b 160-MS/s TI-pipelined SAR ADC has been presented
in this paper. The self-embedded offset cancellation and the de-
sign of CDAC arrays for two-stage SAR ADCs have also been
addressed. The offset cancellation enables a more relaxed cal-
ibration range with less additional calibration effort, thus al-
lowing for the implementation of high-speed and low-power

comparators. The CDAC of the first-stage implements both de-
coupled flip-around MDAC amplification and prevents the use
of a power hungry reference generator. The -attenuator
used in the second-stage DAC array enables reference-buffer-
free operation and establishes a sufficiently low output equiva-
lent capacitance, to improve the bandwidth of the opamp. The
ADC achieves 8.9-b ENOB without gain calibration. The pro-
totype ADC draws only 2.72-mW power from the 1.1-V supply
and exhibits an FoM of 50 fJ/conv.-step.

APPENDIX

The top-plate parasitic of the second-stage CDAC with
-attenuator causes an inter-stage gain error that is ana-

lyzed as follows. Fig. 10 shows the 5-b CDAC used in the
second-stage SAR ADC, where an extra 2 b for offset cancel-
lation is not considered. The output of the DAC including its
top-plate parasitic can be expressed as shown in (A1) at the
bottom of the page, where equal to is the sum of
internal array capacitance, and equal to “1” or “0” is the bit
decision of each comparison. Assuming that the top-plate para-
sitic of each unit is , and representing the sum of
the array’s top-plate parasitic are and , respectively
(the parasitic of is neglected here). The parasitic
and appearing in the denominator are independent,
thus only contributing to the gain error. As a consequence, the
normalized gain error can be expressed as

(A2)

(A1)
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Fig. 10. A 5-b capacitive DAC array with -attenuator to divide the
reference voltage by 8.

Fig. 11. SNDR versus the top-plate parasitic in a 10-b TI-pipelined-SAR
(w/& w/o compensated ).

Since the term in the denominator is quite small, (A2) can
be simplified as

(A3)

The value of needs to be determined so that the deviation
from can be less than . Accordingly, the error term

can be written as

(A4)

As the full-scale of is , with the attenuator of
64/31C, it can be obtained that should be suppressed to less
than 1.7%. Fig. 11 plots the result of SNDR versus in a 10-b
TI-pipelined-SAR ADC. Since the drop of the performance is
large even with relatively small parasitic it is necessary to com-
pensate for the limit. After layout routing, the layout extrac-
tion tools show that the top-plate parasitics of and is
around 15 and 56 fF, respectively, which approximates to of
8%. Therefore, to compensate for the inter-stage gain error, it is
necessary to increase the capacitance of times according
to

(A5)

giving equal to 1.43. Therefore, the capacitance of equal
to 31.25 fF becomes 1.43 times larger than its nominal value.
Considering the mismatch and process variation, the split struc-
ture can be implemented in medium resolution. For higher ac-
curacy, gain calibration would be required.
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