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Abstract—Healthcare electronics count on the effectiveness of
the on-patient signal preprocessing unit to moderate the wireless
data transfer for better power efficiency. In order to reduce the
system power in long-time ECG acquisition, this work describes an
on-patient QRS detection processor for arrhythmia monitoring.
It extracts the concerned ECG part, i.e., the RR-interval between
the QRS complex for evaluating the heart rate variability. The
processor is structured by a scale-3 quadratic spline wavelet
transform followed by a maxima modulus recognition stage. The
former is implemented via a symmetric FIR filter, whereas the
latter includes a number of feature extraction steps: zero-crossing
detection, peak (zero-derivative) detection, threshold adjustment
and two finite state machines for executing the decision rules.
Fabricated in 0.35- CMOS the 300-Hz processor draws only
0.83 , which is favorably comparable with the prior arts. In
the system tests, the input data is placed via an on-chip 10-bit SAR
analog-to-digital converter, while the output data is emitted via an
off-the-shelf wireless transmitter (TI CC2500) that is configurable
by the processor for different data transmission modes: 1) QRS
detection result, 2) raw ECG data or 3) both. Validated with
all recordings from the MIT-BIH arrhythmia database, 99.31%
sensitivity and 99.70% predictivity are achieved. Mode 1 with
solely the result of QRS detection exhibits 6 reduction of system
power over modes 2 and 3.

Index Terms—QRS detection, quadratic spline wavelet trans-
form, wavelet transform, wearable electrocardiograph (ECG) de-
vice, wireless ECG monitoring.

I. INTRODUCTION

W IRELESS electrocardiogram (ECG) acquisition elec-
tronics has emerged as a comfortable low-cost tech-

nology for continuous cardiac monitoring. In order to release
the patients from bulky devices and heavy wire connection, the
on-patient front-end unit must be miniaturized in size and con-
sume very low power. There are essentially three functional
blocks: 1) an analog front-end for amplification and filtering,
2) an analog-to-digital converter (ADC) for digitization, and 3)
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Fig. 1. QRS detection processor for a wireless ECG acquisition system.

a wireless transmitter for delivering the data to the back-end
unit. Among them, as evidenced in other wireless biopotential
acquisition systems [1], [2], the wireless transmitter dominates
the system power. One effective way to save the wireless en-
ergy in Electroencephalography (EEG) seizure detection [1] is
to locally compute the frequency-band energies before deliv-
ering the data, leading to 14 system power saving comparing
to full data transmission. For the wireless capsule endoscope
reported in [2], local image compression leads to 2 system
power reduction.
For cardiac monitoring, the complete ECG data is normally a

surplus in healthcare level. For instance, long-time arrhythmia
monitoring is to detect the occurrence of arrhythmia and store
an interval of the abnormal ECG, avoiding emitting and storing
large amount of data [3]. In fact, just the RR-interval between
the QRS complex is sufficed to accurately compute the heart
rate variability (HRV) [4], [5]. In this respect, local signal pre-
processing becomes a prospective way to avoid transmitting the
redundant data. This paper describes a customized digital signal
processor for system power reduction in a wireless ECG acquisi-
tion system (Fig. 1). The key attributes of the processor are the
Quadratic Spline Wavelet Transform (QSWT), feature extrac-
tion and decision-making stages to optimize the detection accu-
racy of the QRS complex. A 10-bit SARADC (over-sampled by
4 to realize an effective resolution of 12 bits) and a wireless con-
troller are co-integrated on chip to allow real-time verification.
The wireless module is an off-the-shelf device similar to that in
[1], which is managed by the proposed processor to transmit the
data under different formats (i.e., the QRS detection result, the
raw ECG data or both). With this flexibility, the full ECG data is
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also obtainable on demand, and the efficiency of the processor
can be evaluated by comparing the power dissipation in each
mode. The back-end of the system is a PC terminal that dis-
plays the digitized ECG signal, QRS complex occurrence and
heart rate in real time. The recorded ECG data can be stored for
further analysis.
The fabricated 0.35- CMOS processor with parallel-

and pipeline-intensive architecture minimizes the clock rate
(300 Hz) for achieving a 300-Sa/s throughput, measuring a very
low consumption of 0.83 that compares much favorably
with the available low-power processors; all still draw tens to
hundreds of at their specified lowest clock rate of 1 MHz
[6]–[9].
This paper is organized as follows: Section II introduces the

QRS detection, discusses the ways of realization and briefly re-
views the principles of wavelet transform (WT). Section III de-
tails the stage realization of the proposed QRS detection pro-
cessor. The experimental results are reported in Section IV. The
conclusions are drawn in Section V.

II. QRS DETECTION FOR ECG SIGNAL PROCESSING

In this section, the background of QRS detection is reviewed
and its implementation method is discussed. The key principles
and advantages of WT are briefly summarized.

A. QRS Detection

ECG is the heart biopotential consisting of P, QRS complex,
T and U waves. The QRS complex strongly reflects the activity
of the heart during ventricular contraction. Due to its detect-
friendly characteristic shape, it can be served as the basis for
automated determination of heart rate, or further ECG analysis
such as the HRV, which is a key indicator of an individual’s
cardiovascular system. Substantial research effort had been paid
on QRS detection [10].
There are two factors making QRS detection challenging:

1) ECG signal is likely contaminated by much noise and arti-
facts, such as powerline interference, electrode contact noise,
patient-electrode motion artifacts, Electromyography (EMG),
baseline wandering, data collecting device noise, quantization
noise and aliasing, etc. 2) The wide variation of QRSmorpholo-
gies and rhythms, from abnormal ECGs and interpersonal varia-
tions [11], [12]. As a result, a QRS detector must be particularly
robust over noise and disturbance.
QRS complex detection algorithms typically consist of a

preprocessing stage and a decision stage. The former is mainly
based on baseline wandering removal, high frequency noise
removal and transform of ECG waveform to specific patterns.
The decision stage is to apply decision rules for QRS detection.
The sensitivity (Se) and predictivity (Pr) of common software-
based QRS detection methods are summarized in Table I.
Among them, the WT shows the highest detection accuracy to
date. Furthermore, WT can be realized with filter banks [13]
which are implementation-friendly with digital circuits. WT
method is therefore selected as the basis for this research.
QRS detection can be realized differently. An analog circuit

can be low power and compact, but suffering from performance
variability and process dependence [14]. Although general-pur-
pose processors can offer re-configurability and excellent

TABLE I
SUMMARY OF QRS DETECTION METHODS

accuracy, the power dissipation is still too high for long-time
monitoring. As flexibility and efficiency are generally trade-off
in processors, avoiding the unnecessary overheads (e.g., extra
logic, memory, IO ports) [15], [16] should potentially yield the
highest power efficiency. In this work, a tailor-made digital
processor is proposed for QRS detection, which allows more
design flexibility for performance enhancements.

B. Wavelet Transform (WT)

WT is widely employed for singular point detection [17],
[23]. It is also simple for digital circuit implementation as fi-
nite impulse response (FIR) filter structure can be employed for
realization and the required number of gates and registers is nor-
mally small. The WT of a signal is defined as

(1)

where means wavelet transform of signal with mother
wavelet with translation and dilation [24]. Symbol de-
notes complex conjugate. Here is a scale parameter often se-
lected as the power of two, ( ), where denotes
integer. This type of WT is called dyadic WT. The dyadic WT
can be calculated with Mallat’s algorithm as follows:

(2)

(3)

Thus the WT can be computed with FIR filters with coefficients
and ( and , together with down

sampling recursively.
To provide approximate translation invariance which is im-

portant for detecting the temporal location of QRS complex, in-
serting zeros in the filter coefficients are performed instead of
performing down sampling in WT. This is the “à trous” algo-
rithm [25], [26] meaning zeros in the filter coefficients. Fig. 2
summarizes the differences ofMallat’s and “à trous” algorithms.

III. STAGE REALIZATION OF THE QRS DETECTION PROCESSOR

This section details the realization of each stage: QSWT, fea-
ture extraction and decision-making.
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Fig. 2. (a) The Mallat’s algorithm for WT. (b) “à trous” algorithm for WT.
Here and mean the QSWT filters with coefficients shown in (5).

and are the filters with coefficients inserted zeros.

A. Quadratic Spline Wavelet Transform (QSWT)

We employ the QSWT with compact support, and one van-
ishing moment as the mother wavelet . It is a 1st deriva-
tive of the smooth function. The QSWT is introduced in [27]
and applied to QRS detection in [17]. Currently this method
keeps highest detection accuracy comparing the other methods.
Its compact support characteristic enables the FIR filter to be
implemented with fewer taps. The Fourier transform character-
izing its frequency response is shown as follows:

(4)

The corresponding filter coefficients are

(5)

Fig. 3 shows the frequency responses of QSWT in one to five
scales. The signal in various scales after QSWT comparing
with the original ones is shown in Fig. 4. The output signal,
which is called wavelet coefficients, is corresponding to the
smoothed derivative of the input signal. One can read that
the triangular waveform similar to peak is transformed to
modulus maxima pair (positive-maximum-negative-minimum
pair). The zero-crossing point in modulus maxima pair corre-
sponds to the peak.
Note that the higher scale computation demands more filter

taps and more power. After analysis, scale 3 of the QSWT is
chosen for the ECG processing by considering the frequency
distribution of the QRS complex, and filter tap number. The
baseline wandering removal and 50/60 Hz notch filtering are
expected to be provided in the analog front-end [28], [29] for
power and area concerns. Besides the attenuation of baseline
wandering of QSWT as shown in Fig. 3, further logic resource
is not allocated in baseline wandering removal and 50/60 Hz
notch filtering.
The input data type of QSWT is in a 12-bit 2’s complement

format. The bit width is compatible with [30], [31]. After the
multiplication and addition computations, the data are truncated
into a 14-bit 2’s complement format by simulation optimization
for power reduction.

Fig. 3. Frequency responses of QSWT scales.

Fig. 4. Various shapes and their QSWT coefficients.

B. Modulus Maxima Pair Recognition Stage

The design of modulus maxima pair recognition (MMPR)
stage is based on the principle of divide-and-conquer to solve
the problem of recognizing the modulus maxima pair. As shown
in Fig. 5 the MMPR structure, these works are attained by sev-
eral sub-circuits for feature extraction and decision-making. The
feature extraction is accomplished by zero-crossing detection,
peak (zero-derivative) detection and threshold adjustment. The
decision-making is realized by two finite state machines (FSM)
for decision rule implementation. The features are extracted in
parallel to minimize the clock rate of the circuits. The paral-
lelism can further the power reduction since the circuit can op-
erate slowly for the same computation, leaving much clock-
delay margin for voltage supply reduction (i.e., power savings).
According to the information from the three sub-circuits,

FSMs change state when finding a positive or negative peak,
a zero crossing point and a peak with opposite direction to
the previous peak, and output the markings of the temporal
locations of QRS complexes.
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Fig. 5. Modulus Maxima Pair Recognition (MMPR) module and the two corresponding FSM for realizing the decision rules. Here peak means the point with
derivative equal to zero. RP is refractory period meaning the blanking period rejecting the coming detection of QRS complex. TOLmeaning tolerance is the waiting
period for resetting the FSM. DLY is a fixed waiting period for QRS indication output. What under the dashed line are the actions.

1) Zero-CrossingDetection: The zero-crossing detection cir-
cuit checks the 14-bit 2’s complement formatted wavelet co-
efficient input, and outputs the 1-bit indication of QRS com-
plex occurrence. If the input wavelet coefficient is zero, the
zero-crossing detection circuit directly outputs the indication,
specifying the zero point in input data. In another more common
condition, if the neighboring two samples of data are with op-
posite signs, the indication of zero-crossing will be outputted
when the latter sample is inputted to the circuit. The equations
are shown as follows:

(6)

where is the input time series; is the sample number;
represents the zero-crossing detection function.
2) Peak Detection: The peak detection circuit checks the

14-bit 2’s complement formatted wavelet coefficient input, and
outputs the 2-bit indication of the upward or downward peaks by
detecting the zero-derivative points, which are the zero-crossing
points of the first derivative of input wavelet coefficients. It
employs a filter circuit with coefficients of and the
zero-crossing detection circuit to realize this function. The equa-

tions that follow show where approximates the derivative of
input signal; is now processing the time series :

(7)

3) Threshold Adjustment: The threshold adjustment circuit
classifies the peaks (zero-derivative points) of the input wavelet
coefficients into peaks induced by noise and peaks induced
by QRS complexes, and then stores the amplitudes of these
peaks. The inputs of threshold adjustment circuit are the 14-bit
2’s complement formatted wavelet coefficients and the 2-bit
indication from peak detection circuit. The outputs are two
threshold values in 14-bit 2’s complement format, positive
threshold and negative threshold. According to the amplitudes
of recent classified peaks, the threshold adjustment circuit
estimates the amplitude of noise signal and the amplitudes of
modulus maxima which are induced by the QRS complexes.
By multiplying empirical coefficients to estimated noise am-
plitude and signal amplitude, the thresholds are generated. The
equations for threshold calculation follow:

(8)
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(9)

(10)

(11)

where is the threshold output from the threshold adjust-
ment circuit. is the point with derivative which
equals to zero and is classified as induced by the QRS com-
plex. means the point with derivative which equals
to zero and is classified as induced by noise. Averaged Signal
Peak Level ( ) is the running estimation of the signal peak
(maxima) amplitude. Averaged Noise Peak Level ( ) is
the running estimation of the noise amplitude. is a percentage
number. The variable affects the speed of or
in responding to the new or data. Here
is selected as 8 by simulation.
The calculation of positive and negative thresholds is done

by two sets of these variables.
4) Finite State Machine (FSM): The decision-making is

based on a temporal relationship of the aforementioned feature
points. For preventing large data storage, two finite state ma-
chines are employed for decision-making, as shown in Fig. 5.
They embody the decision rules in the state transition graph.
FSM 1 is for the decision-making and FSM 2 is for marking the
QRS complex position according to the signals from FSM 1.
Four states are designed for representing the modulus maxima
pair in FSM 1. The states follow.

Seen_none is the starting state.

Seen_peak means that the FSM has already detected
a peak exceeded the threshold (valid
peak).

Seen_zero means that the FSM found the
zero-crossing point after finding the valid
peak.

Seen_negative means the FSM found a peak with
opposite direction and exceeding the
threshold.

The decision rules are:
Classification Case 1: If the Seen_peak, Seen_zero and

Seen_opposite states are passed, then the corresponding seg-
ment of signal is recognized as valid modulus maxima pair.

Classification Case 2: If the Seen_peak and Seen_opposite
states are passed, the corresponding segment of signal is recog-
nized as valid modulus maxima pair.

Waiting Period: If no valid peak or zero-crossing point
encountered, the state machine would stay in the same state for
a period of time, set as 0.07 s.

Reset Condition: If it stays in the same state for a period
(0.07 s), or it is system startup, the state machine goes back to
Seen_none state. This rule is helpful for system stability.

Refractory Blanking: After the state machine enters the
Seen_opposite state, the state machine will stay in the same state
in the coming 25 samples, and then it is directed to Seen_none

Fig. 6. State transitions ( ).

state. This is because there is a physiological refractory period
of about 200 ms after a QRS complex, which is without the
occurrence of QRS complex [3]. It is helpful to decrease the
possibility of false detection.
Since the temporal location of zero-crossing point within

modulus maxima pair corresponds to the temporal location of
QRS complex, but the zero-crossing point is inside the modulus
maximum pair, the zero-crossing points are considered as
potential QRS complex candidates and temporarily marked
before finally seeing the whole modulus maxima pair.
The detailed architectures of the two FSMs are shown in

Fig. 5. The state transition and corresponding detection signals
are shown in Fig. 6. Two QRS detection cases of ECG signals
without and with baseline wondering from the MIT-BIH ar-
rhythmia database [30] are shown in Figs. 7 and 8, respectively.
For example, when a detection cycle starts, both FSM 1 and

FSM 2 are in Seen_none states. These states keep until a peak
with amplitude exceeding the positive or negative threshold ac-
cording to the signals from Signal Peak Detection circuit and
Adaptive Threshold Adjustment circuit. Then FSM 1 transits to
Seen_peak state and stays if no zero-crossing point is found,
for a waiting period TOL counted by the counter. When a zero-
crossing point is found according to Zero-crossing Detection
circuit, FSM 1 transits to Seen-zero state and sets the QRS_can-
didate register to 1 to inform FSM 2 that a potential QRS com-
plex point is found. On the other hand, FSM 2 then transits from
Seen_none state to Seen_candidate state and starts counting the
time in this state. If FSM 1 sees a peak exceeding the thresholds
with opposite direction to the previous found peak, it sets the
QRS_confirm register to 1 for confirming the validity of the po-
tential QRS complex point. Then FSM 1 stays in Seen_opposite
state for a refractory period (RP) for rejecting the new detection.
On the other hand, FSM 2 transits to Check_confirm state after a
fixed delay, then it will check the QRS_confirm value and output
the QRS_indication value. Finally, FSM 1 and FSM 2 run back
to Seen_none states.
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Fig. 7. Case 1: Corresponding signals for QRS detection.

Fig. 8. Case 2: Corresponding signals for QRS detection.

FSM 1 sets the QRS_candidate signal to 1 when it enters the
Seen_zero state, and also set the QRS_confirm signal to 1 within

the whole Seen_opposite state. According to the QRS_candi-
date and QRS_confirm signals, FSM 2 can mark the QRS com-
plexes with fixed delay.

C. System Design

A10-bit SARADC and a wireless controller are also incorpo-
rated in the design for testing the whole system in real time. The
conversion range is given by the voltage references. The key
performance metrics are: , ,

, . .
The ADC oversamples the signal by a factor of 4 to re-pro-
duce an equivalent resolution of 12 bits. The clock frequencies
of the ADC, QRS detection processor and system controller are
13.2 kHz, 300 Hz and 76.8 kHz respectively. Since the sampling
rates ofMIT-BIHArrhythmia database and American Heart As-
sociation ECG database are 360 and 250 Hz respectively, the
300-Hz sampling rate within the region is justified [30], [31].
The input of the QRS detection processor is of 12-bit 2’s com-

plement format. The output is either a 1-bit indication of the
QRS complexes or the raw ECG signal.
The wireless controller drives the off-chip TI CC2500

module [32]. Three transmission modes are offered: 1) the QRS
detection result, 2) the ECG raw data, 3) both. In modes 2 and
3, 2 bytes are utilized per data packet, which includes one raw
12-bit data and one 1-bit QRS detection result and 3 control
bits. In mode 1, we use one byte per data packet, which contains
3 control bits and five 1-bit QRS detection results. Therefore,
the CC2500 transmits about 10 less in mode 1 than in modes
2 and 3, lowering significantly the system power.
The specification of biopotential analog front-end can be

found in [33], with programmable gain and signal filtering
capability. The expected power consumption of it is 60
or lower. Although baseline wandering removal is commonly
entailed for signal preconditioning in QRS detection, it is
suggested not to realize it digitally because: 1) the baseline
wandering can be more power and area efficient when realized
in the analog front-end; 2) the QSWT already has a highpass
response to attenuate the low frequency noise; 3) baseline
wandering removal consumes large amount of logic resource
(area) and power in the digital domain as the computational
cost of baseline wandering removal is usually large (i.e., the
cut-off frequency of the filter must be very low comparing to
sampling frequency). For instance, filtering the low frequency
noise via multi-scale mathematical morphology has been tried
in the layout synthesis, but demanding huge chip area.
The realization of the processor is also speed-optimized to

avoid a high frequency clock. The whole processor operates
in pipeline and parallel architecture for feature extraction. The
clock rate is 300 Hz with 1 sample/clock cycle. This slow-and-
parallel technique lowers the logic delay requirement. A single
1.8-V supply is employed to allow reliable operation of all cir-
cuitry including the ADC in real-time measurements.

IV. EXPERIMENTAL RESULTS

The processor (including thewireless controller) fabricated in
0.35- CMOS occupies 1.03 1.08 , whereas the ADC
occupies 0.25 0.32 . The entire IC was tested at a single
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(a) (b)

Fig. 9. (a) Microphotograph of the chip and testing system. (b) Testing plat-
form of the chip. (a) NI Signal Acquisition/Generation Board for generating
corresponding analog signal of MIT-BIH arrhythmia database. (b) The reported
IC in a socket. (c) The off-chip RF module. (d) Wireless receiver. (e) Signal dis-
play user interface. (f) FPGA board for generating the clock for IC.

TABLE II
POWER CONSUMPTION (WITHOUT THE ACQUISITION ANALOG FRONT-END)

1.8-V supply. Fig. 9 shows the chip microphotograph and the
testing platform of the chip.

A. Performances of the QRS Processor

Table II summarizes the power consumed by each block in the
3 data transmission modes. Since only the QRS complex occur-
rence is transmitted in Mode 1, it lowers effectively the system
power by 6 , verifying the feasibility of the proposed QRS de-
tection processor. The wireless module TI CC2500 operates at
2.4 GHz with an output power of 0 dBm. In the system tests, the
ECG signal is transmitted in a room at light-of-sight distance of
10 m. The Baud-rate is set to 250 kBaud and the package size
is 12 bytes.

B. Verification With MIT-BIH Arrhythmia Database

The MIT-BIH arrhythmia database [30] is employed to eval-
uate the detection accuracy of the processor in real time under
wireless acquisition. It is with 48 recordings of ambulatory ECG
signal from 47 subjects. The signals are with a 360-Hz sampling
rate, an 11-bit resolution and a 10-mV amplitude range. The per-
formance indices: Sensitivity ( ) and positive prediction ( )
can be calculated with the equations given by

(12)

(13)

TABLE III
DETECTION RESULT WITH MIT-BIH DATABASE

where meaning false negative is the number of fail detected
true beats and meaning false positive is the number of false
detected points. The detection accuracy is shown in Table III.
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TABLE IV
BENCHMARK OF QRS DETECTION PROCESSORS

C. Benchmark With the State-of-the-Art

A comparison with prior arts is given in Table IV. The de-
sign [34] with the Pan-Tompkins method based on band-pass fil-
tering, nonlinear computations and threshold have limited sen-
sitivity ( ) and predictivity ( ), even
the power consumption is impressive (2.21 ). The wavelet
multiscale-product method [35] reports better accuracies (

, ), but since RAM block is employed and
the clock frequency is high, the power consumption is much
higher (176 ).Mathematical morphology QRS detection has
also been reported [5] showing high accuracies ( ,

) with low power (2.7 ), but the results are
based on simulations. In this work, the employed Quadratic
Spline WT achieves , and 0.83

of power in real-time measurements.

V. CONCLUSIONS

A 0.83- QRS detection processor realized in a 0.35-
CMOS process for real-time wireless ECG monitoring has been
presented. Quadratic Spline Wavelet transform provides pre-fil-
tering, whereas the feature extraction circuits and two state ma-
chines offer modulus maxima pair recognition. Validated with
all recordings in MIT-BIH arrhythmia database, the processor
shows high sensitivity (99.31%) and predictivity (99.70%) in
real-time tests. The system power is reduced by 6 when com-
pared with full-data transmission mode.
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