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Abstract: As a physical layer of body area network, human body communication (HBC) has become a prospective candidate
with advantages of less interference and intrinsic transmission for implanted devices. Currently, its bit error rate (BER)
performance has not been thoroughly reported with high confidence because the traditional BER testing method in commonly
used wireless radio and optical system communication, if directly applying in HB channel, is both time-consuming and
problematic due to significant physiological limitations. In this study, a time-efficient approach using jitter characteristics is
proposed to tackle this problem. To practically measure the BER in HBC channel, experiments based on human arms are
carried out with 600 records of jitter data (5 subjects, 3 modulation schemes, 4 separation distances, and 10 transmit power
levels). By using both normal probability plot and Kolmogorov–Smirnov test, the authors found that the HBC experimental jitter
data mainly followed normal distribution. Additionally, the comparison between estimated BERs using their approach match well
with those via the theoretical prediction based on additive white Gaussian noise channel. Finally, the proposed approach can be
an effective measurement method not only for the BER of body channel, but also applicable in other similar low rate systems.

1 Introduction
The problem in coping with the ever-increasing high cost of
healthcare system poses a major health burden in many countries
with the increasing ageing population. Body area network (BAN)
as shown in Fig. 1 is an alternate wireless network consisting of
wearable computing devices or implanted sensors and has been
proposed to be a solution to this problem. Through the analysis of
various vital physiological signs (e.g. electroencephalography,
electrocardiogram, electromyography, and blood pressure) by
diverse on-body sensors, preliminary prognosis can be generated
for patients as front-end screening and the central control can
record personal health information into database for better
diagnosis by corresponding healthcare check-ups. As a result, the

heavy healthcare system loading could be greatly relieved from this
approach, especially for the chronically monitoring [1]. 

In many medical applications, the sensors attached on or
implanted inside the human body (HB) need to communicate with
each other and those outside the body. Several stringent
requirements such as reliable transmission with low bit error rate
(BER), low-power consumption to extend battery life, and avoid
the eavesdropping are required. Fortunately, for effectively
transmitting the basic biosignals, a moderate data rate of few kbps
to few dozen kbps would suffice [2]. To satisfy the above
requirements, HB communication (HBC), a novel approach
utilising the HB as the communication channel, has been
researched.

HBC technology is based on the conduction property of body
tissues to establish a communication connection among the diverse
implanted or surface devices with very little outside leakage [3].
Compared to other transmission techniques, e.g. Bluetooth, Zig-
Bee, and wireless local AN, HBC has its advantages for medical
applications such as low attenuation, low transmission power, low
carrier frequency, and provides enough data rate for transmitting
the biosignals with high security to prevent eavesdropping [4].
Consequently, HBC has been becoming a capable candidate for the
communication backbone of BAN.

The first successful implementation for HBC system is
capacitive coupling HBC, reported by Zimmerman [5]. Its
principle is based on the HB as the transmission medium exploiting
certain parts of the near field and nearby environment. Galvanic
coupling HBC is another implementation originally reported by
Handa et al. [6] and its propagation is based on coupling
alternating current into the HB. For galvanic coupling approach,
the propagation only takes place within the HB. The transmission
process no longer depends on the return path and environment.
Thus, galvanic coupling HBC avoids the external interference and

Fig. 1  Sample BAN. Physiological data are transferred from the central
link sensor to hub, and then to the central control access point, from where
it can be accessed by hospital and emergency centre

 
IET Sci. Meas. Technol., 2018, Vol. 12 Iss. 1, pp. 145-150
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

145



can be considered as a suitable approach for the privately reliable
communications among medical implanted devices with the trade-
off of lower transmission data rate.

For biosignals transmission, the reliability of communication
link is one of the major considerations and the BER performance
can indicate the reliability. However, the BER of HBC has not yet
been thoroughly reported. In recent studies, most of them
concentrated on the characteristics of body channel model [7–11],
or the effect of experimental setting [12, 13]. Few of them had
briefly mentioned the BER derived from either theoretical
calculation [14] or simulation [15] only. The reason of very few
investigations on BER over HBC is that in low transmission rate of
galvanic coupling HBC, the relative long measurement time
needed by traditional measurement of low BER, which compares
the output and input to obtain the reasonable number of errors,
encounters complications, especially on the HB. Thereby, in this
paper, the idea of our proposed approach is to use an indirect way
based on jitter characteristics in HBC channel to estimate the BER
results, so that the total measurement time can be reduced to within
a reasonable period.

The arrangement of this paper is as follows: Section 2 briefly
reviews the fundamental jitter theory and introduces the proposed
method. The in vivo experiments based on human arm channel and
the bio-jitter data with normal distribution analysis are reported in
Section 3. Section 4 discusses the BER of HBC with experimental
results and theoretical calculation based on additive white Gaussian
noise (AWGN) channel characteristics. Finally, conclusion is
provided in Section 5.

2 Proposed methodology
Jitter is defined as a time-domain phenomenon reflecting the
deviations of a signal from its ideal occurrence [16]. In an ideal
communication, all the edge transitions should happen at the same
instant in each unit interval (UI) (the black solid line in Fig. 2a). A
UI means the ideal time duration of a single bit. However, in a

realistic communication channel, both the rising and falling edges
(the yellowish dot lines in Fig. 2a) are deviated from the ideal
timing locations due to the channel imperfections caused by
electromagnetic interference, thermal noise, and crosstalk. Hence,
this time-domain phenomenon (denoted as jitter) uncertainty
affects the quality of system and reflects the errors of data stream. 

Generally, the jitter information can be found from the received
data or waveforms of system based on the differences between the
time intervals of received data (from one zero crossing to another
adjacent zero crossing) and their corresponding ideal time
durations. However, if the precise zero-crossing points in the raw
received data are unknown in advance, some sort of
approximations should be first applied to estimate the zero-
crossing points.

In Fig. 3, we have constructed experimental eye diagram from
receiving data over HBC. Then, we have applied the linear
interpolation between the two adjacent recorded bipolar points (+,
−) nearest to the zero crossing to estimate the zero-crossing timing
position t (denoted as 0). With values of t and the number of
recording points between the zero crossings, the estimated time
intervals of received data can be obtained. The next step is to
calculate the differences between the estimated time intervals and
their corresponding ideal timings based on relative centre-position
alignment. After that, their small deviations can be projected and
recorded as the values of jitters. 

Armed with the jitter information from received data, we briefly
explain the relationship between jitter and BER in communication
channel. According to Li [17], an intrinsic relationship exists
between BER and jitter, which has been depicted in Fig. 2. In
Fig. 2a, the sampling time (ts) is the decision moment of the raw
received data. For better explanation, let us take the left edge
transition as an example. If the edge transition exceeds the
sampling time ts, i.e. the edge transition occurs on the right-hand
side of ts, the system will erroneously determine this bit. Similar
situation occurs on the right-hand side. Fig. 2b shows the
corresponding probability distribution function (PDF) of the
occurrence of the edge transition. Under normal circumstances, the
edge transition happens before ts with high probability. However,
there exists possibility of edge transition causing system error due
to non-ideal channels characteristics, interferences etc. Then, the
error probability is the area of the PDF beyond ts, which
corresponds to the shaded areas in Fig. 2b. By finding this error
probability via integral operation, the BER can be estimated. This
relationship can be expressed mathematically as shown in (1) based
on the statistical principle. Thereby, we can estimate the BER in
HBC via jitter characteristics

BER = Ptr1∫
ts

+∞
f left t dt + Ptr2∫

−∞

ts
f right t dt (1)

where Ptr1,2 represent the probabilities of edge transitions in the
received data stream from ‘0’ to ‘1’ and from ‘1’ to ‘0’. In general,
a 50% probability is used for Ptr1,2. Therefore, with sufficient
number of jitter samples to assemble an approximate PDF, the BER
can be estimated by using (1) in a shorter time than the traditional
measurement method which requires large data transmission with
long experimental time period for accurate representation of low
error characteristics.

To obtain the BER in HBC via (1), jitter PDF should be known
in advance. As far as we know, the jitter PDF over HBC has not
been published before. In this work, we measured and reported
their PDFs based on statistical characteristics. The more the jitter
data we measure, the more accurate jitter PDF we can get.
However, there is a trade-off between the data sizes and
measurement times. To have a compromise of reasonable data size
within a short measurement time and acceptable errors with certain
confidence interval, (2) was adopted to obtain the data size of jitter
[18]

N = 4σ2Z2

D2 (2)

Fig. 2  Proposed methodology
(a) Illustration of jitter in the transmitting digital signals on edge transitions, (b)
Relationship between jitter and BER

 

Fig. 3  Sample recorded data with graphical illustration to estimate the
zero-crossing point position
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where N is the sample size; σ is the standard deviation derived
from preliminary study; D is the total width of expected confidence
interval; and Z is the standard normal deviate value, which depends
on the selected confidence interval. The narrower the total width D,
the larger the sample size N. Here, we expect that the measurement
of jitter should have 90% confidence interval lies within a width of
±5% of σ, so that the sampling errors of jitter can be restrained.
From our preliminary study [19], the estimated σ of jitter is about
7.1 μs, and then we set the width D to be ±5% of σ (about 0.71 μs).
Besides, Z equals to 1.645 when the confidence interval for the
measurement is 90% [18]. Thus, the needed sample size can be
calculated as 1082 and this was the approximate number of jitter
recorded for each of our measurements in Section 3.

Fig. 4 presents a flowchart that describes our proposed
methodology. First, the receiving data via body channel is
measured. Then, the corresponding eye diagram is constructed.
After that, the zero-crossing points are obtained by linear
interpolation, so that the time intervals of received data can be
evaluated. Next, the differences between the estimated time
intervals and the ideal UI give our empirical jitter values, and
hence the approximate jitter histogram can be assembled.
Moreover, after applying the normal distribution tests, the
statistical characteristics of jitter are analysed and turned out to be
primarily normal distributed. With the evaluated jitter PDF and the
mathematical relationship between BER and jitter, the BER

performance of HBC can be finally estimated by integral operation.

3 Experiment and statistical analyses
The major steps of in vivo experiment and data processing are
depicted in Fig. 5. First, in vivo HBC experiments are carried out
with different parameters and ranges, followed by jitter information
acquisition. Next, the bio-jitters are tested for normal distribution
via normal probability plot and Kolmogorov–Smirnov (K–S) test.
Finally, the BER performances from both measured HBC channel
jitters and theoretical AWGN channel characteristics are obtained
for discussion. 

Here, we had recruited five healthy volunteers (three males and
two females, with body mass index: 18.5–26.1 and age: 21–30) for
our galvanic coupling HBC experiments. Prior to the experiments,
all the participants signed an informed consent form after the
experimental nature and procedures were explained and their
questions were answered.

Fig. 6 shows our in vivo experiment measurement setup. Two
pairs of physiotherapy electrodes (40 mm × 40 mm, Shanghai Litu,
LT-01) were attached to the body arm as the transmitter electrodes
and the receiver electrodes, respectively, with certain separation
distances, denoted as S. Using the vector signal generator (Agilent,
N5182A MXG vector signal generator), the random pattern of
digital signals with commonly used modulation schemes [binary

Fig. 4  Flowchart of our proposed BER estimation by using jitter characteristics
 

Fig. 5  Major steps for estimating the BER performance in HBC channel
 

Fig. 6  Measurement setup of human arm channel experiment
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phase shift keying (BPSK), quadrature phase shift keying (QPSK),
and 16-quadrature amplitude modulation (16-QAM)] were
generated with symbol rate of 10 ksps (UI = 0.1 ms), similar to the
low demand of biosignal transmission. From our previous work

[20], the carrier frequency was chosen to be 500 kHz for low
attenuation over HB arm channel.

At the receiver side on human arm, the signal analyser (Agilent,
N9020A MXA signal analyser) was used to pick up the received
signal and recovered the data, which can be used for the
comparisons of transmitted symbols to obtain the experimental
BERs. Besides, all the experiments were carried out warily to
avoid the common ground problem by using the battery-powered
differential probe (Agilent, 1141A) at the detection site. To obtain
comprehensive results, the total number of measurements
contained 600 sets of jitter data: 5 healthy subjects, 3 modulation
schemes, 4 separation distances (6, 12, 25, and 40 cm), and 10
transmit power levels. Each set of measurement time took around
0.2 s with nearly 40,000 points, which were much shorter than the
traditional data measurement method for the same BER. Table 1
summarises the parameters of our experiments. 

Next, the records were extracted and processed to acquire the
jitter information based on the linear interpolation introduced in
Section 2. Fig. 7 presents a sample of jitter histogram assembled by
sufficient sample-size data. One could either perform numerical
integrations by normalising the histogram data, or fit into a known
probability distributions based on observation. Here, the normal
distribution curve (red line) was fitted to the experimental jitter
histogram. So, we consider that the jitter data of HBC likely to be
normal distributed. To further test this hypothesis, two standard and
widely used methods for the normal distribution test, namely
normal probability plot and K–S test, were employed. 

Normal probability plot is one of the commonly used graphical
technique to identify the substantive departures from the normal
distribution. It is a visual test method with observation of the
resulting graph. In normal probability plot, the sorted data will be
plotted versus the cumulative probabilities. Then, in the resulting
graph, if the graph looks close to a straight line pattern, the
population is normal consistent, or at least plausibility close to
normal distribution. Otherwise, if the testing data is not normal
distribution, the results will deviate much from the straight line.

Fig. 8 displays a typical normal probability plot result of
statistical bio-jitter. One can observe that most of the testing data
located on the resulting straight line and just a small number of
data at the two ends deviated from that line. Hence, this plot can
imply the bio-jitter data is mainly following the normal
distribution. 

After the qualitative confirmation, we adopted K–S test to
perform a test of probability distribution that can be used to
compare a sample with a reference probability distribution. To
apply K–S test for the statistical bio-jitter distribution, a hypothesis
testing was made, which was shown below:

• H0 (null hypothesis): The experimental jitter data followed the
normal distribution.

• H1 (alternative hypothesis): The experimental jitter data did not
follow the normal distribution.

Before performing the test, a threshold value, also known as
significant level (α), was chosen as 5% [22]. If the resulting p-
value of K–S test was equal or smaller than α (0.05), we should
veto the normality of testing jitter data. Otherwise, if the p-value
was greater than α (0.05), it would suggest that the experimental
jitter can be assumed as the normal distribution.

The K–S tests were run for all experimental jitter data to check
for their compliance of the normal distribution and the p-value
histogram was shown in Fig. 9. All the p-values were greater than
the pre-set significant level α (0.05) and the overall average was
about 0.68. Therefore, we can conclude that the jitter data of HBC
channel mainly followed the normal distribution. 

After obtaining the statistical properties of jitter in HBC
channel, we can substitute both fleft(ts) and fright(ts) back into (1)
with the normal distribution of mean (µ) and standard deviation (σ)
to estimate the BER in HBC channel. Alternately, we also
performed the direct numerical integrations using normalised
histogram data in (1) to obtain BER values. We found both the
direct and indirect ways (fitted to normal distribution) were giving
the similar BER results in HBC channel.

Table 1 Parameters of in vivo experiments
Parameter Range
modulation BPSK, QPSK, 16-QAM
separation distance (S) 6, 12, 25, 40 cm

power levela −10 to +17 dBm
aLow enough so that contact current levels over extremities did not exceed safety

standard [21].
 

Fig. 7  Sample histogram result of statistical jitter from in vivo experiments
with a fitted curve (red line)

 

Fig. 8  Normal probability plot of statistical bio-jitter
 

Fig. 9  Histogram of in vivo experimental data with p-value from K–S test
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4 Results and discussion
In Section 4, we discussed the BER performance of HBC channel.
In [20], the AWGN channel assumption worked smoothly with
HBC. Assuming an AWGN channel, the BER performances in
different modulation schemes were theoretically a function of
Eb/No (the energy per bit to noise power spectral density ratio), as
shown in (3) and (4), where Q(x) is the Gaussian Q-function [23]

BERBPSK/QPSK = Q 2Eb/No (3)

BER16 − QAM = Q 0.8Eb/No (4)

Fig. 10 shows the BER results for separation distances of 6, 12, 25,
and 40 cm using BPSK, QPSK, and 16-QAM, along with the
theoretical AWGN calculations. It can be found that the
experimental results from jitter characteristics were consistent with
the theoretical AWGN calculations over in vivo experiments
parameters listed in Table 1. This, in turn, can evidently indicate
that HBC was not far from the AWGN channel. Errors seemed to
be more pronounced in both low and high Eb/No regions. Errors in
the low Eb/No region were believed due to the error vector
magnitude estimation method in vector signal analyser using a non-
data-aided receiver [24]. For high Eb/No region, the errors were
mainly due to the limited sample points for each symbol in the

vector signal analyser (or the accuracy of the vector signal
analyser). Additionally, the scattering discrepancies occurred could
be due to the different body characteristics among human subjects.
These results echoed that our proposed technique can estimate the
BER over HBC channel with much less measurement time (about
0.2 s for a wide BER range of 10−2–10−11 with 10 ksps on HBC),
which can save more times of measurement than the traditional
BER testing way, especially in high reliability with low BER (say 
< 10−5). 

5 Conclusion
A time-efficient approach for estimating the channel characteristics
of low BER in HBC using jitter characteristics had been proposed
and implemented here. Adequate sample size of experimental
jitters data were analysed based on a 90% confidence interval of
jitters located in a ±5% width of σ. We also applied the normal
probability plot and K–S test to testify the jitter data in HBC
channel mainly followed the normal distribution. In addition, the
uniformity of experimental results and theoretical AWGN channel
calculations implied that the HBC channel can be modelled as an
AWGN channel under the conditions in our experiments. The
proposed method via jitter measurement to estimate BER value for
HBC was much time-efficient (in vivo experimental time within
seconds for a wide BER range) than the traditional ones, allowing
reliable measurements with little anthropometric changes in HBC.

Fig. 10  BER performance in experiments and theoretical calculation based on the AWGN theory for various separations
(a) 6 cm, (b) 12 cm, (c) 25 cm, (d) 40 cm
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This approach can be a time-efficient measurement for not only
capable of the BER performance in body channel, but also with the
flexibility to adapt appropriately in many other low data rate
systems with similar time-constraints and low BER requirements.
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