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Abstract—This paper presents a reference error calibration
scheme for successive approximation register (SAR) analog-to-
digital converters (ADCs) verified with two prototypes. Such a
reference error often occurs in high-speed SAR ADCs due to the
signal dependent fast switching transient, and leads to a large
differential nonlinearity and missing codes, eventually degrading
conversion accuracy. The calibration concept aims to differentiate
the error outputs and correct them by simply performing a
subtraction in the digital domain. It runs in the background with
a little hardware overhead, and does not depend on the type of the
input signal or reduce the dynamic range. Two prototypes were
measured which are made up of different reference generation
circuits. Design #1 has the reference voltage from off-chip and a
3-pF decoupling capacitor on-chip, while design #2 includes an
on-chip reference buffer. Both designs were fabricated in 65-nm
CMOS and achieve at least 9-dB improvement on signal-to-(Noise
+ Distortion) ratio (SNDR) after calibration. The total core area
is around 0.012 mm? for both chips and the Nyquist SNDR of
designs #1 and #2 is 59.03 and 57.93 dB, respectively.

Index Terms— Reference buffer, reference error calibration,
successive approximation register (SAR) analog-to-digital con-
verter (ADC), threshold reconfigurable comparator.

I. INTRODUCTION

UCCESSIVE approximation register (SAR) analog-to-

digital converters (ADCs) [1]-[3] exhibits excellent
energy efficiency due to their simple structure and operation.
The SAR ADC often employs a capacitive digital-to-analog
converter (DAC) to store the input signal, which is then con-
trolled by the SAR logic based on the comparator’s decisions
to perform the binary-searched approximation to the input.
Though the sequential operation in the SAR ADC limits the
conversion speed, its primarily digital implementation benefits
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from technology down-scaling which enables high-resolution
designs at moderate speed [1]-[3]. Furthermore, low-power
dynamic comparators [4], [5] are usually adopted in SAR
ADCs working at medium to high resolution. While the
switching power of the DAC is fully dynamic, the energy per
conversion step [figure of merit (FoOM)] can be low [4], [5].
Previous designs mostly explored low-power DAC switching
techniques [2]-[5] and improved the logic circuit [6], [7] that
further pushed the FoM of SAR ADCs toward the theoretical
limit [8]. However, when considering peripheral circuitries for
ADC’s interface, such as input buffer [9], reference buffer [10],
and the clock receiver, they can be even more power hungry
than the ADC core and power reduction in the converter
becomes negligible. It remains a challenge to be addressed,
but simultaneously maintains good energy efficiency in both
the ADC core and its interface circuitries.

As the SAR conversion relies on the switched-capacitor
DAC to subtract the input from the references, a fast
DAC switching is desirable to achieve high speed and high
resolution. The delay in each bit cycling is usually dominated
by the DAC settling in medium to high resolution, and
sufficiently low-output impedance of the reference buffer for
fast reference voltage recovery leads to substantial power
dissipation [10], [11]. Alternatively, to relax the tradeoff, a
large number of decoupling capacitors (several tens to hun-
dreds picofarad) are often introduced to suppress the switching
ripple from the reference voltage, but that imposes a large
core area which is highly undesirable as the cost of die area
is extremely high in advanced technologies.

Adding redundancies in successive approximation (SA)
conversion can relax the settling accuracy for the leading
bits, ultimately reducing power from the reference buffers.
However, this approach either needs extra capacitors in the
DAC [12] thus reducing the dynamic range, or has limited
tolerance range due to the constraint on the DAC arrange-
ment [1]. Other than redundancy, there are also compensation
methods. Adding the reservoir capacitors [13] can ease the
most significant bit (MSB) capacitor settling, but it takes up
a large area and degrades SNR as the extra capacitors are
separated from sampling capacitors. The data driven charge
compensation method [14] similarly can reduce the switching
transient in MSB settling, but it requires matching between the
SA and the compensation logic, adding to design complexity.

Different from using redundancies this paper proposes a
threshold reconfigurable reference error (TRRE) calibration
scheme to correct settling errors caused by switching tran-
sients in leading bits. The errors are detected during SA
conversion adaptively and fixed in the digital domain with
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Fig. 1. Overall ADC architecture.

a large tolerance range. The detection circuit is embedded in
the SA conversion and requires a little modification of the
conventional SAR ADC. It also has a low-hardware overhead
for decoding the final output. Moreover, the calibration con-
cept can be used to quantize an input signal beyond the rail to
rail. Two prototypes in 65-nm CMOS are measured to verify
the proposed calibration, where a 3-pF decoupling capacitor
is added on-chip for the reference voltages in design #1, and
other design (design #2) contains a reference buffer on-chip.
The experimental results of the two designs implemented with
and without reference buffer demonstrate the effectiveness
of the proposed calibration method. The signal-to-(Noise +
Distortion) ratio (SNDR) is at least improved by 9 dB before
and after calibration in both ADCs. Designs #1 and #2 have a
SNDR of 59.03 and 57.93 dB at Nyquist and achieve 60.4 and
58.94 dB at a low-frequency input, respectively. Thanks to the
proposed scheme, only a 3-pF decoupling capacitance needs to
be added with ~840-uW power on the reference buffer being
consumed in designs #1 and #2, respectively. The total power
consumptions of design #1 and #2 are 1.6 and 2.44 mW at
100 MS/s from a 1.2-V supply, respectively.

II. ADC ARCHITECTURE

The overall ADC architecture is illustrated in Fig. 1, which
consists of a bootstrapped sample-and-hold front-end, self-
timed loop, capacitive DAC array, comparator, SAR controller,
reference network circuitry, and decoder for the calibration
scheme. The SAR ADC performs Vcm-based switching and
has a similar operation as [2]. Reference voltage in design
#1 is provided by off-chip and a 3 pF decoupling capacitor
is added in on-chip. Besides, an extra 30-Q resistance is
inserted between the off-chip references and the ADC core to
model the reference sources finite output impedances, while
an on-chip reference buffer is added in design #2 and the off-
chip reference voltages are isolated by the buffer. It is worth
noting that the low dropout linear regulator (LDO) is omitted
in both designs since the testing environment is relatively
ideal and only contains the ADC. In order to embed the
calibration scheme in the converter, two simple modifications
are made. First, the threshold of the comparator is modified
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Fig. 2. (a) Switching energy versus digital outputs in ten cycles. (b) Signal
behavior of reference ripple during switching transients.
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to be configurable. Second, one extra cycle is introduced
during the SA conversion for reference error detection. The
signals EN_Cal and CalP/N indicate whether the calibration
is triggered and reflected the polarity of the reference error in
either case. The output codes are eventually corrected based
on the calibration decision. The calibration details will be
discussed in Section IV.

The total capacitance of the DAC array is 768 {fF for match-
ing consideration. A synchronous time loop with ~600 ps for
each bit cycling is designed where the time allocation for the
comparison and logic processing versus the DAC settling is
assigned to be 3:2 in a typical process corner. Obviously, this
setup will cause the time for MSBs settling becoming rather
short and large reference ripples cannot be recovered before
the next comparison. Thanks to the calibration, their reference
and settling errors are expected to be calibrated.

III. REFERENCE ERROR IN HIGH-SPEED SAR ADC

The capacitive DAC is typically employed to perform
the binary-search approximation. While the capacitors in the
first three leading bits occupy more than 80% of the total
capacitance, they are charged or discharged according to
the switching nature thus leading to a large current-induced
reference ripple [15]. If this ripple is not able to recover within
the required accuracy before the next bit comparison, it will
eventually affect the conversion precision. The high-resolution
SAR ADC has a particularly stringent requirement for refer-
ence voltages since the SAR loop provides limited time for
reference recovery and the DAC settling. Such reference errors
are difficult to correct at post-processing in the digital domain
as they are highly signal dependent.
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Fig. 2(a) indicates the switching energy corresponding
to each output code in an 11-b SAR ADC built with a
binary-weighted DAC and Vcm-based switching. As shown
in Fig. 2(b), the switching energy required for each bit cycling
is code dependent. Therefore, the reference ripple due to the
switching transient is also signal-dependent. The worst case
scenario occurs when the first two leading bits results in a
complementary logic decision (B1B; = “10” or “01”). The
switching energy for each bit cycling is gradually reduced as
the remaining bits contain less number of units, implying that
the reference ripples are also getting smaller.

IV. DESIGN CONSIDERATIONS FOR THE REFERENCE
GENERATION CIRCUIT

In practice, analog circuitry is normally biased through a
low-noise reference voltage provided by a LDO [16] that can
isolate low-frequency supply noise and switching noise from
the digital circuits. On the other hand, the DAC switching
noise in a high-speed SAR ADC is often in the gigahertz range
with heavy load, implying that the LDO will not be able to
cover it in time. In order to alleviate such noise and provide
fast recovery, reference buffers are required.

A. Reference Generation Circuit-Flipped-Voltage Follower

The multiple supplies for NMOS-source follower
(NSF) [1], [17] topology demand additional LDOs, or charge
pump in the system, which requires extra capacitors thus
increasing design complexity and area. Unlike the NSF
topology, the flipped-voltage follower (FVF) topology
can work under a single supply. It is widely used as
reference buffer due to its simple structure and fast transient
performance [10]. Its schematic is shown in Fig. 3(a). The
biasing circuits for devices M2 and M3 are similar to the
NSF, while the FVF topology forms a local feedback loop
through devices M3 and M1. The shunt feedback on the other
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(a) Schematic of FVF buffer. (b) Equivalent small signal model of FVF output stage.
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Fig. 4. Equivalent RC model of critical DAC settling case.

hand helps to reduce the output impedance and improve its
current sourcing capability.

To support a high-speed and high-resolution SA operation,
the gain bandwidth (GBW) product of the reference buffer
needs to be large to have a fast transient response. By breaking
the feedback loop, the equivalent small signal circuit of FVF
is depicted in Fig. 3(b). Based on its transfer function and
dominant pole location, the GBW of the FVF circuit is equal to
gm18m27ro02/Cout, Where g,,1 and g2 are the tranconductance
of M1 and M2, respectively, r,» is the output resistance of
M2 in the saturation region and Cgy is its capacitive load.
While, the GBW of the NSF is g,,/Cout, Where g, is the
tranconductance of the NSF input transistor. Assuming that
two topologies are designed with the same current in the main
branch and the same W/L ratio for the input transistor (M1)



CHAN et al.: SAR ADCs WITH THRESHOLD RECONFIGURABLE REFERENCE ERROR CALIBRATION

2579

3
o5l = Rou=1790Q

= O Rou=16Q
Q2 ¥ Rout=14Q
14
% 1.5}
> 0.5}

% 20 40 60 80 100 120 140

160

Ron,DAC (Q)

Fig. 5.

—©- MSB transition error
—>¢ MSB/2 transition error

',"b"-,‘ 0)
R IR T i SECEETEEE >
i | + Large DNL

- ! '

c : :

S : :

o Pl

O P

(] : :

g Xl Missi X
' i |Missing

© codes

1 NN .

160 192 224

x’ X

0 31 g3 95

out i

(a)

Fig. 6.

under the same load (Coyu).Though g,,/gn1 < 2, the intrinsic
gain of M2 in FVF (gmars2) is much larger than g;,/gm1
(e.g., gmaro2 > 4 with its overdrive voltage of ~0.15 V
and W/L of 1.2/0.06 um in the adopted technology). Conse-
quently, the GBW of FVF topology is larger than NSF leading
to a better transient response. Therefore, we adopted the FVF
topology as the reference buffer in this design.

B. Design Considerations of the Reference Buffer
in SAR ADC

To avoid reference error during the SA conversion,
the reference buffer needs to support the most critical
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Simulation result of DAC settling error in term of LSB versus Ron DAC in various Roy.

(a) Code histogram of an 8 b example with reference error. (b) Signal behavior of the DAC’s output.

switching transient. Fig. 4 demonstrates the MSB/2 transition
of the DAC, where two leading bits result in complemen-
tary decisions drawing most switching energy. According to
required switching energy the transition can be equivalent to
charge an equivalent capacitor Ceq1 from initial value (Vo1)
of 3/4Viet t0 Vier in DAC), and a Ceqp from 1/4Vie t0 Viet
in DAC,. For binary DAC, Ceqi = 1/4Cqac and Ceqp =
1/8Cgqc. Initially the buffer’s output decoupling capacitor Coyt
providing the charge for Ceq1 and Ceq> causes a reference
ripple (Verr), which can be approximated as

Cout + 3/4Ceq1 + 1/4Ceq2) (1)
Cout + Ceql + Ceq2 et

Verr ~ Vref - (
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The ripple can be recovered with support from the reference
buffer, which simultaneously provides charges for Coyt, Ceqi,
and Ceqz. For n-bit resolution, the settling time for the error
within £ least significant bit (LSB) can be derived as

Verr 2" Verr
tyst = 1 cr=1 ‘R
wst n (ﬁA) T n ( BVier out
'(Ceql + Ceq2 + Cout) 2

where A is the LSB, 7 is the time constant dominated by the
buffer output impedance Ryy. According to design, Coyt iS
set to 4Cgac Which helps the decoupling capability. It is worth
noting that (2) ignores the ON-resistor of the DAC switches
(Ron,sw) that can induce error in the estimation. On the other
hand, when considering the Ron,sw it is difficult to derive
a close-loop formula as it affects the Ve at (1) and the
equivalent RC-network is rendered complex as other capacitors
connecting to the reference also need to be considered. There-
fore, a simulation is performed under the adopted technology
with design parameters in this paper. With 11-b resolution,
the target SNDR is around 60 dB which leads to N = 11
and f = 0.5 (considering a margin for other errors). The
loop time spared for the DAC settling is ~300 ps and total
DAC capacitance of 768 fF. From the simulation as illustrated
in Fig. 5, it can be found that the output impedance of the
reference buffer should be less than 17.9 Q even when Ry
is close to 0, which is consistent with (2). At the same time
with reasonable ON-resistance 100 Q (W/L = 12/0.06 um),
the buffer output impedance has to be 14 Q in order to meet
the above target. Based on the FVF topology introduced in the
last section, the reference buffer would consume >2.4 mW
power which is at least twofold larger than state-of-the-art
ADC designs in the adopted technology.

V. PROPOSED TRRE CALIBRATION AND COMPARISON
WITH STATE OF THE ARTS

A. Reference Error Behavior in SAR ADC

In order to demonstrate error behavior caused by insuffi-
cient DAC settling and reference ripple, an 8-bit SAR ADC
with reference errors in the 2nd bit transition is adopted in
the following example. Its output code histogram is plotted
in Fig. 6(a) which can well demonstrate the error behavior.
There exists both missing codes and large hits at the digital
outputs (Dgyt), corresponding to the ADC transition points of
the MSB/2 and MSB/4. On the other hand, Fig. 6(b) depicts
the signal behavior of the DAC output (Vpac) during the
successive approximation. The 1st MSB decision of the ADC
does not depend on reference accuracy as differential input
signals (Vi;) are compared directly without any switching.
Since Vi, is smaller than the comparison threshold “0,” the
MSB is set to “0.” Correspondingly, the MSB capacitor is
charged to Vir for the next bit comparison. Charging such
large capacitance with finite impedance on Vif node causes a
large reference ripple [Fig. 6(b) (Top)]. As such, if this ripple
cannot recover before the next comparison, it will result in a
wrong transition at MSB/2. Ideally in this example, the Vpac
should be smaller than the comparison threshold but now
Vpac is still above “0” due to the false previous decision.
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Fig. 7. Proposed TRRE calibration concept in output code histogram.

Such error makes Vpac unable to converge back to the com-
parison threshold within 1/2 LSB and the decision of the rest
of the bits all equal to “1.” As a result of the reference errors,
certain ranges of Vi, have the same digital representation
which explains why there is a large hit and missing adjacent
codes at Dyy = 63. Such errors cannot be recovered by any
post-signal processing in the conventional SAR ADC without
redundancy scheme, since the code in large hits cannot be
separated to represent their corresponding inputs. To correct
the error in the digital domain, error detection with certain
analog circuit modifications are introduced by the proposed
scheme further detailed in Section V-B.

B. Proposed Calibration Technique and Considerations

The proposed TRRE calibration concept is demonstrated
with the histogram plot of a 6-bit ADC in Fig. 7. It is important
to recall here the fact that the reference error causes large hit
and missing codes in the local transition. The idea is to remove
the large hits and fill up the gaps. First, those large hits due
to single dependent reference ripple must be separated, then
by shifting them back to their corresponding digital outputs,
the gap from the missing codes can be filled.

The code-separation is done during the SAR conversion by
inserting an additional error-detection step and new threshold
levels. Fig. 8 illustrates the detailed operation in a 6-bit ADC
example with and without reference errors in the conversion.
The top-plate residue corresponding to each operation is shown
in the blue and red curve at the bottom of Fig. 8. In this
example, the 3rd step is assigned for error detection. During
the sampling phase, the input signal is sampled at the top
plate of the DAC. As mentioned before, the MSB transition
of the ADC is reference error independent, which directly
compares the input signal (Vi,) with threshold level “0,” thus
avoiding the switching activity in the DAC. As Vi, is smaller
than 0, the 1st transition of the DAC sets the MSB (16C)
to 4+ Vier. Assuming that the red residue contains a reference
error in the 1st transition, the decision D sets the MSB/2
(8C) to +Vier. On the contrary, the blue curve is fully settled
before the next comparison and MSB/2 is set to —Vier. The
decision of the 3rd comparison (D;) determines the transition
of 4C as well as the reset polarity of the upcoming error
detection step. If Vpacez > 0, the rest of the capacitor all
reset to + Vier in the 3rd transition and vice versa to — Vies.
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The 3rd supplementary cycle detects whether the final residue
crosses the comparison threshold. If the decision in the adja-
cent comparison is the same (D, = Dgp), it indicates that
the reference error does affect the previous comparison. Then,
—Vier Will apply to 4C, the rest of the capacitors are reset to
Gnd (Vem in differential implementation) and the Vpac con-
verges to a new threshold Vg, for the rest of the bits cycling.
If Vbacea < 0, implying no occurrence of comparison error,
then the ADC resumes its normal conversion. If the residue
conveys to a new threshold, the corresponding outputs will
contain a constant offset from nominal values. Such offset
can be easily measured from the mean of the output code
separately between the normal and with the new threshold
conversion cases. Two extra digital signals are brought off-chip
which are EN_cal and CalP/N. EN_cal indicates whether the

ence network with decoupling. While the proposed technique
can only handle the reference error during the SAR conver-
sion, the cycle-to-cycle reference incomplete recovery error
is suppressed by a low enough output impedance reference
network.

C. Comparison With the Existing Solutions

The non-binary searching algorithm [18] or adding redun-
dancy [1], [12] in SAR conversion provides certain amount
of correction range in the corresponding conversion cycles
depending on the setup, which allows the previous con-
version errors, such as incomplete settling or dynamic off-
set, to be recovered in the later comparison cycles. The
non-binary searching can be implemented simply by using
a sub-radix-2 DAC. Even though more comparison cycles
are needed, it does not degrade overall conversion speed
as each cycle can be condensed. The Binary-scaled error
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TABLE I
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This Work BEC [12] BRW [1]
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Fig. 10. Circuit Schematic of reference configurable comparator.

compensation [12] effectively corrects the conversion errors
through the insertion of several binary-weighted redundant bits
in the DAC. The error tolerance range normalized to full scale
can be derived as for ith cycle and N-bit ADC

Zk 1+2 Cr —
2NC + Cr

where C is the unit capacitor in the DAC array, C; is the capac-
itance switched in the ith cycle, the C, is inserted capacitor for

Erioi(i) = x 100%3i +1 <M —1) (3)

the redundant bit, and M is the total bit resolution. The imple-
mentation of the addition based decoder is simpler and costs
less power dissipation when comparing it with [18]. However,
the dynamic range of the ADC can be significantly reduced
when a large error range needs to be covered. Another binary-
scaled recombination weighting method [1] splits the MSB
capacitor for redundant bits generation. Therefore, the over-
all array capacitance remains the same as the conventional
(Cr = 0) avoiding the loss of the dynamic range, while the
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Fig. 11. Complete circuit schematic of adopted reference buffer.

tradeoff is related with the fact that the error tolerance range
is limited by the number of the capacitors split from MSB.
The proposed scheme is compared with the above existing
solution based on the setup of this prototype. The results are
shown in Table I. Determined from the post-layout simulation,
the error detection bit in the proposed method is set at the
5th bit transition resulting in error tolerance range of 6.25%
from the previous three leading bits. Other methods are
arranged for a similar correction range and they are also
depicted in Table I. It is worth noting that our scheme requires
the references to settle fully by the time the error detection
bit decision is made, which is similar in the redundancy
schemes [1], [12].

It can be observed that the proposed calibration does not
have an extra capacitor overhead. It also has a minimum
number of cycles. The decoder digital overhead is less when
compared with others and it is worth noting that the decoder is
not always working and it is only activated when calibration is
needed. Furthermore, the proposed calibration concept can be
used to quantize an input signal swing larger than the full scale
rail corresponding to the enhancement of the dynamic range.
As illustrated by an example in Fig. 9, once Vi, exceeds the
full scale rail, the digital output will be all 0 and the ADC is
saturated. In this example, the error detection step is set at the
2nd transition which determines whether Vi, — 1/2VEs crosses
the threshold or not by resetting all the rest of bits to — Vier.
In the case of Vpac2 > 0, the DAC output converges to the
threshold Vq, that is set as 1/4Vgs. Therefore, the final output
can be obtained by subtracting the Vy, from the digital output
(000001010). An extra 3.5-dB dynamic range can be achieved
in this specific example. Depending on the mth transition cycle
assigned for error detection, the extra input covering range
is 1/2"~1 Vps.

On the other hand, the extra transistor pair for the reference
voltage in the comparator can induce extra noise which
requires extra power to suppress. However, the proposed
scheme does not reduce the dynamic range and it can simplify

Generator

30pm
E,r— |
=
D
"N’I ecap ol
=
N
=
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Fig. 12.  Chip microphotographs of (a) design #1 and (b) design #2.

the decoding logic. Such power consumption overhead can be
relieved by these parts. The switchable comparator reference
can drift with voltage and temperature changes and therefore
has to be monitored in the background. In conclusion, when
comparing with the redundancy scheme, the proposed structure
can keep the DAC in full binary which favors the layout
arrangement. Besides, our scheme can also correct a large
reference error without any penalty in the dynamic range.

VI. CIRCUIT IMPLEMENTATIONS
A. Threshold Reconfigurable Comparator

The comparator consists of a resistive load preamplifier fol-
lowed by a two-stage dynamic latch [19] as shown in Fig. 10,
which achieves an input-referred noise of 500 u Vims.
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For threshold voltage configurability, an extra input transistors
pair (M3 and M4) is inserted at the pre-amplifier whose
voltage is controlled by a multiplexer. During the normal
SAR operation, the gate voltage of M3 and M4 are pulled
to Gnd; while it switches to REFP/REFN depending on
reference error polarity. MOS decoupling capacitors are added
on the reference voltage to suppress the thermal and kick
back noises. According to post-layout simulation the reference
error limited the conversion SNDR to near 50 dB and the
maximum ripple error is around 120 mV with approximately
5% of Vgs. Therefore, the error-detection step is set at the
5th cycling that can tolerate 6.25% error of Vgs. The thresholds
Vap and Van, which are originally designed as £75 mV could
vary about 20% under the mismatch variation. As mentioned
before, the code-separation does not rely on the accuracy of
two additional thresholds, which only require an error range
within 5%.

B. Reference Buffer
Fig. 11 illustrates the circuit schematic of the reference
buffer adopted in this design. Similar to [20], the complete

circuit schematic consists of three parts, including the error
amplifier, Vg voltage generator and the FVF output stage.
External reference voltage Vier,in is provided at the input of
the error amplifier in an unit-gain configuration. The mirror
voltage Vpir at the source of M5 is forced to be equal to
Viet,in by the negative feedback loop. The error amplifier is
designed with a simple low-power differential opamp, which
also provides supply-noise-rejection for Viir. The dc gain of
the error amplifier in this design is 36.6 dB, with a unit-gain
bandwidth of 40 MHz and phase margin of 84°. Vi is used
to generate the Vi by the diode-connected transistor MS5.
In the FVF output stage, the Vi at the gate of M2 sets the
output voltage Vief our such that Vie oue is mirrored from V.
Since M2 and M5 are designed to be well matched (same
size and same biasing condition), Vief,our is equal to Vipir.
Hence, Vief,out = Vmir = Vref,in. A decoupling capacitor Cp
of 2 pF is placed at the gate of M2 and M5 for isolating
the switching noise coupling from the DAC switching to the
Vset voltage generator circuit, as well as stabilizing the error
amplifier with negative feedback. The voltage output of the
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FVF based reference buffer is designed to be 1 V with a supply
voltage at 1.2 V.

Thanks to the proposed calibration in this design, the ref-
erence buffer can be designed to be partially settled during
the transition of three leading bits. In addition, by using a
relatively large current (~580 ©A) and a decoupling capacitor
Cout of 3 pF, the internal pole at the gate of the M1 is pushed
to a high frequency up to several gigahertz and the dominant
pole of the fast FVF feedback loop is designed to be at the
output node. Such decoupling also helps to reduce the kick-
back noise from the DAC. Besides, the large current ensures
low-output impedance for the reference buffer that allows the
reference voltage to be fully recovered during the last few bits
cycling. The low-voltage-threshold transistor is chosen for M1,
M2, and M5 to achieve higher bandwidth and lower power
consumption. The open-loop gain of the FVF output stage is
20 dB with a unit-gain-bandwidth of 958 MHz. Consequently,
the circuit occupies a small die area and power consumption
with 8% and 25% of the total ADC, respectively. Including
the biasing circuit, the reference buffer consumes ~840 uW,
which is about four times smaller than the reference buffer
design without the reference-settling error calibration scheme.

VII. MEASUREMENT RESULTS
The proposed reference error calibration was implemented
in two 11-b 100-MS/s SAR ADC:s fabricated in a 65-nm 1P7M
digital CMOS process. The input full-swing of the ADC is
2Vpp. Fig. 12(a) and (b) shows the chip microphotograph of
designs #1 and #2, respectively; the active area of design #1

(b)

Output spectrum at around Nyquist input after calibration for (a) design #1 and (b) design #2.

is 0.011 mm? where the decoupling capacitors of the reference
voltages only occupy 6.8% of the total area. The total area of
design #2 is 0.012 mm? which includes the on-chip reference
buffer. Fig. 13(a) illustrates the output code histogram of
design #1 before calibration with remark of the first three
transition locations. Before calibration, there are large hits and
gaps near the leading bits’ transition points and they are well
suppressed or filled after calibration as shown in Fig. 13(b).
Fig 14(a) and (b) illustrates the differential nonlinearity
(DNL) and integral nonlinearity (INL) of design #1 before
and after calibration, respectively. The maximum DNL and
INL are 10/—1 LSB and 6.39/—9.63 LSB before calibration,
respectively. The DNL and INL improved to 1.28/—0.97 LSB
and 1.05/—0.84 LSB after calibration, respectively. The SNDR
before calibration is 50.01 and 48.64 dB, which is improved
to 59.03 and 57.93 dB after calibration in designs #1 and
#2, respectively. Measured FFTs plotted at near Nyquist input
frequency after calibration of designs #1 and #2 are shown
in Fig. 15 (a) and (b), respectively. Though in the post layout
simulation the settling accuracy of the later few bits are
guaranteed, in the measurement we find that the design margin
is not sufficient where the output still contains small DNL
errors. The switching of less units causes smaller reference
ripples, while the error referred to the DAC’s output depends
on the total number of units connected to the reference.
To improve this, 1-bit redundancy (2C) can be inserted before
the last two bits conversion to relax the previous settling
accuracy to 0.1% consuming a negligible loss of the dynamic
range. Furthermore, in case the offset is too large imposing Vg,
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TABLE 11
BENCHMARK WITH STATE-OF-THE-ART WORKS

Isscc [ 1sscc’ [A-sscc] Isscc This work
10 [12] | 12[21] [ *13[22] | *16 [23]
Architecture SAR | CI-SAR | SAR D;ésR;, i SAR
Technology (nm) 65 40 40 28 65
Resolution (bit) 10 10 10 12 1
Sampling Rate (MS/s)) 100 80 50 100 100
Supply Voltage (V) | 1.2 1.1 1.1 0.9 1.2
Power (mW) 1.13 5.54 0.47 0.35 1.6 2.44
ENOB @Nyquist 9 8.71 918 | 10.41 | 9.51 9.33
SFDR (db) @Nyquist| 66.9 | 6512 | 68.16 | 7542 | 74.61 | 68.35
Area (mm?) 0.026 | 0.08 | 0.0114 | 0.0047 | 0.011" | 0.012"
Decoupling (F) N/A N/A N/A N/A 3p 3p
(fﬁfc'ﬂr%_'i{gﬁ) 22 178 16 263 | 219 | 379

* including the decoupling capacitor for the reference voltages

** including the reference buffer

a 80 T T T T T T T T T
3 70 -:-.::--'--'_==.'.r.|-.r. ----------- coee. e eee®®eaa.
g eo T St L PR 4 e A
% 50
g 40 | SNDR — |Design#1—
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X 60
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ﬂnﬂ 40 | SNDR — |Design#1 —
Z 30 SFDR ----|Design#2 —| | : . .
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Input Frequency (MHz)
(b)
Fig. 16. Sweep around input frequency of designs #1 and #2. (a) Before

calibration. (b) After calibration.

and Vg, over the correction range, we can trim them according
to the mean code difference between the normal and the
threshold configured mode of the ADC’s output but this is not
necessary in our design. Fig. 16 shows the measured dynamic
performance across different input frequencies. The SNDR
remained around 59 dB until the Nyquist input in both designs.
Table II summarizes and compares the overall measured
performance with state-of-the-art SAR ADCs at the similar
performance. The total power consumption is 1.6 and 2.44 mW
at 100 MS/s from a 1.2-V supply in design #1 and #2,

respectively. This paper shows a competitive FoM when
compared with others in the same technology. While the
decoupling capacitor or buffer for the reference voltages is
included on-chip, the active area is still kept small.

VIII. CONCLUSION

A reference error calibration has been proposed in this
paper for high-speed and high-resolution SAR ADC. Results
indicate that the presented scheme can greatly relax the
stringent requirements of reference generation in SA opera-
tion which has been revealed as a steep tradeoff on either
the area or power consumption. Thanks to the calibration,
the adopted decoupling capacitor is small and the power
consumption of the reference buffer is low. The calibration
scheme also has a small hardware overhead and is able to
enhance the dynamic range of the ADC. The calibration can
be simply embedded in the SA operation and the correction
is performed in the digital domain. The measured results of
two prototypes demonstrate that the SNDR can be improved at
least by 9 dB in an 11-b SAR ADC with only a 3-pF on-chip
decoupling capacitor as reference or 0.84-mW power reference
buffer.
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