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Abstract— This article presents a split time-interleaved
(TI) successive-approximation register (SAR) analog-to-digital
converter (ADC) with digital background timing-skew mismatch
calibration. It divides a TI-SAR ADC into two split parts with the
same overall sampling rate but different numbers of TI channels.
Benefitting from the proposed split TI topology, the timing-skew
calibration convergence speed is fast without any extra analog
circuits. The input impedance of the overall TI-ADC remains
unchanged, which is essential for the preceding driving stage in
a high-speed application. We designed a prototype seven-/eight-
way split TI-ADC implemented in 28-nm CMOS. After a digital
background timing-skew calibration, it reaches a 54.2-dB signal-
to-noise-and-distortion ratio (SNDR) and 67.1-dB spurious free
dynamic range (SFDR) with a near Nyquist rate input signal and
a 2.5-GHz effective resolution bandwidth (ERBW). Furthermore,
the power consumption of ADC core (mismatch calibration
off-chip) is 12.2-mW running at 1.6 GS/s, leading to a Walden
figure-of-merit (FOM) of 18.2 fJ/conv.-step and a Schreier FOM
of 162.4 dB, respectively.

Index Terms— Analog-to-digital converter (ADC), digital
background calibration, split ADC, time-interleaved (TI) ADC,
timing-skew mismatch.

I. INTRODUCTION

THE time-interleaved (TI) analog-to-digital converter
(ADC) topology is a popular choice for wideband appli-

cations, such as ultra-wideband (UWB) communications, high-
speed serial links, digital oscilloscopes, and software-defined
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radio [1]–[3]. A TI ADC architecture can increase the effective
sampling rate of the overall converter by multiplexing several
ADCs in parallel [4]. For an N-way TI ADC, the converter can
achieve a sampling rate N times faster than a single channel.

However, this structure suffers from mismatches among the
different sub-converters, including offset, gain, and timing
skew [4]. Both offset and gain mismatches produce static
errors, whose effects are ideally independent of the input
frequency (input derivative or slope). Therefore, the offset and
gain mismatches can be easily estimated by taking the aver-
age/rms of each sub-ADC output, followed by a correction in
the digital domain directly [5], [24]. On the other hand, timing-
skew mismatch generates a dynamic error, which increases
with the input frequency, thus presenting a greater challenge,
which is the calibration focus of this article.

A background calibration is more attractive than the fore-
ground version because it can track supply and temperature
variations during the normal operation. Numerous background
timing mismatch calibration techniques have been developed
for TI ADCs [1], [3]–[17]. Those previous works all estimate
the timing skew in the digital domain and then correct the
timing mismatch in analog by tuning the sampling clock’s
delay line [1], [2], [4], [7]–[13] or by subtracting the timing-
skew error in digital directly [3], [5], [14]–[17]. References [3]
and [14]–[16] presented fully digital background calibration
techniques, but the additional channels required for the cali-
bration add power or area overheads. Also, most importantly,
the input impedance of the overall ADC is changing because
of the reference channel, which is an obvious disadvantage for
high-speed ADCs.

This article presents a split TIADC architecture with
digital background timing mismatch calibration [18]. The
proposed architecture allows the overall TI ADC to use
a fast convergence timing mismatch calibration method
without adding any analog circuits. Furthermore, the ADC
input impedance remains constant with the proposed split
architecture, and no spurs arise from impedance variations
such as in the traditional reference-assisted architecture.
To verify the proposed architecture, we implemented a
prototype 1.6-GS/s seven-/eight-way split TI ADC in 28-nm
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Fig. 1. (a) Block diagram of a TI ADC with a reference channel and (b) its clock phases.

CMOS. The ADC core (mismatch calibration off-chip)
consumes 12.2 mW and achieves an signal-to-noise-and-
distortion ratio (SNDR)/spurious free dynamic range (SFDR)
of 54.2 dB/67.1 dB with a near Nyquist rate input, leading
to a Walden figure-of-merit (FOM) of 18.2 fJ/conv.-step and
a Schreier FOM of 162.4 dB, respectively.

This article is organized as follows. Section II presents
the literature review of the TI ADCs with reference channel
architectures. Section III describes the proposed split TI ADC
topology. Section IV discusses the digital background timing
-skew mismatch calibration based on the split TI ADC archi-
tecture. Section V presents the implementation details of the
proposed seven-/eight-way split TI successive-approximation
register (SAR) ADC. Section VI summarizes the silicon results
and Section VII draws the conclusions.

II. TIME-INTERLEAVED ADC CALIBRATED

WITH A REFERENCE CHANNEL

A. Architecture and Timing

The use of a reference channel is one of the effective ways
to calibrate the timing mismatch in the background [6]–[8],
[11], [13], [14], [16]. Fig. 1(a) shows an example of the block
diagram of a TI ADC with a reference channel. It consists
of M interleaved channels working at fs/M and a reference
channel operating at fs/N , where fs is the overall TI ADC
sample rate, while M and N are mutual prime numbers.

Fig. 1(b) shows the timing diagram of an example of
M = 4 and N = 5, illustrating the reference channel
cycles through all the sub-ADCs. With an interleaving factor
of 4, the reference channel is clocked with �R which has a
frequency of fs/5, such that the first sampling edge of �R

coincides with the sampling edge of the first sub-ADC (�1),
the second sampling edges of �R coincide with the one
for the second sub-ADC (�2), and so on for all four sub-
ADCs. This allows the digital backend timing (DET) detection
block to estimate the timing skew based on the difference
[8], [13], [16] or the correlation function [7] between the
output codes of the reference channel and each sub-ADC.
Therefore, the digital backend DET block minimizes the
difference or maximizes the correlation between each sub-
ADC and the reference channel, by adjusting the clock delay

lines [7], [8], [13] or correcting them in the digital domain
[14], [16].

B. Challenges and Issues

There are two practical issues associated with the TI
ADC with reference channel calibration. First, the additional
reference converter will increase both power and hardware
overhead. References [7] and [10] used a comparator/window
detector to replace the reference ADC allowing the reduction
of the power consumption, but implying the slowing down
of the convergence speed [7] or the detection of the polarity
allows only the analog tuning. Second, as shown in Fig. 1(b),
the reference ADC changes the ADC input impedance peri-
odically, and it will produce the extra spurs, which is a strong
disadvantage for high-speed ADCs.

Fig. 2 shows the sampling for the four-way TI-ADC with
a reference channel; it consists of a driver circuit to drive
the sampling capacitance of TI-ADC, which consists of four-
path sampling network of four-channel TI-ADC, and one path
of reference ADC. We assume that each sampling network
has the same sampling capacitance C and equalized turn-on
resistance RS of sampling switch. When the sampling switches
turn-on, the driver’s output signal has a sudden drop because
of the driver’s finite output resistance driving the sampling
capacitance. The drop requires transient time to recover,
which depends on the driver’s output impedance, switch’s ON-
resistance, and the sampling capacitance, as shown in Fig. 2.

Because of the reference channel that is running at fs/5,
while each sub-channel of the TI-ADC is running at fs/4,
the reference channel will meet one of the TI-ADC channels
(such as �R with �1) but not the remaining three TI-ADC
sub-channels (�2−4). As a result, the driver will see 2 × ADC
input sampling networks in �1 and 1 × ADC input sampling
networks in �2−4. This causes the sampling clock-dependent
transient recovery if the driver is not fast enough to recover the
transient (which is usually happening in high-speed ADCs).
Therefore, it produces a dynamic error by sampling in every
five clock cycles. Fig. 3 shows the output spectrum of a
four-way 1.6-GS/s TI ADC with a 320-MS/s reference ADC
that suffers from this phenomenon.
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Fig. 2. Illustration showing the sampling of a four-way TI ADC with a reference channel.

Fig. 3. Simulated output spectrum of a four-way 1.6-GS/s TI ADC with a
320-MS/s reference ADC.

Since this phenomenon is caused by the dynamic settling
error, which depends on both the signal and the sampling
clock phase, it is difficult to calibrate through the traditional
calibration methods. To overcome these issues, we developed
a split TI architecture as described next.

III. SPLIT TIME-INTERLEAVED ADC

A. Proposed Split TI ADC Architecture

The concept of split TI ADC topology is to multiply the
reference channel of the TI ADC in parallel to create another
interleaved ADC. As shown in Fig. 4, a conventional TI ADC
is split into two parts: A and B, with the same overall sampling
rate but different interleaving numbers of channels M and N .
Similar to the TI ADC with reference channel architecture,
M and N must be mutual prime numbers to keep one of the
sub-ADCA(or B) as the reference of ADCB(or A).

Fig. 5 shows an illustrative example of the three-/four-way
split TI ADC with the proposed architecture; it consists of
4 × ADCA working at fs/4 and 3 × ADCB working at fs/3.
Each of the ADCA and the ADCB samples the input signal
Vin at the falling edge of its sampling clock (�A1–�A4 and
�B1–�B3). As the timing diagram shown in Fig. 5, the sample
edge of ADCA1−A4 and ADCB1−B3 will meet each other after
every 12 clock cycles, and it can serve as the implicit timing
reference for mismatch calibration. It enables the background
calibration based on the least mean square (LMS) algorithm,
viewing the output of one channel of the ADCB as the
reference signal to calibrate the mismatch error of ADCA,
while we also apply the same principle simultaneously to
ADCB to calibrate the mismatch error. Finally, it is worth to

note that there are always two sub-converters (one in ADCA
and another in ADCB) sampling in every cycle simultaneously,
imposing a constant ADC input impedance.

B. Implication for Power and Area

Like the traditional non-interleaved split ADCs [19], [20],
the two split parts have the same SNR performance. There-
fore, when we average the digital outputs of TI-ADCA and
TI-ADCB to obtain the final output, as shown in Fig. 4,
the final SNR performance will be improved by 3 dB. Thus,
the requirements of SNR of each split part are halved.

Without the loss of generality, now, we discuss the implica-
tion of a split TI-SAR ADC for power and area. The accuracy
of a high-speed SAR ADC [21], [22] is usually limited by the
kT/C noise and comparator noise, which depends on the size
of the sampling capacitor and comparators, respectively. With
half of the SNR requirement of each part in the split TI-SAR
ADC, the sizes of the sampling capacitor and comparator also
become only half compared with traditional TI-SAR ADC.
Therefore, the other blocks in the SAR ADC are also scaled
down twice, such as the capacitor DAC buffers and the clock
generators.

Global clock generation for interleaving channels is the
other key point for the high-speed TI-ADC. For the split TI
ADC, we also scale down the global clock buffer twice to
maintain the total power and area unchanged. Thus, the jitter
noise of each part of the split-TI ADC increases with a factor
of

√
2. The SNR degradation caused by the jitter noise for

the split TI-ADC with a sine wave input [A · sin(ωint)] can
be expressed as

SNRjitter = 10 · log10

(
2 × A√

2

)2

A2 · ω2
in · [

δ2
A + δ2

B + (2δext)
2] (1)

where δA/B and δext represent the rms value (in unit second) of
the jitters from the internal TI-ADCA/B or the external ADC
clock, respectively. Note that (1) reflects the fact that the two
main signals from parts A and B are correlated (identical in the
ideal case), the effect of δext to parts A and B is also correlated,
while δA, δB, and δext are mutual uncorrelated. Thus, we can
write δA = δB = √

2δint. Therefore, we can obtain

SNRjitter = 10 · log10

(
A√

2

)2

A2 · ω
2
in · (δ2

int + δ2
ext

) (2)
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Fig. 4. Conceptual idea of split TI ADC.

Fig. 5. Architecture and timing diagram of the proposed three-/four-way split TI ADC.

which also remains unchanged when compared with the con-
ventional TI-ADC architecture.

On the other hand, the digital part, such as SAR control
logic and digital logic circuits, cannot simply scale down,
but it takes advantage of technology. In summary, there is
no apparent power and area overhead compared with the
conventional TI-SAR ADC.

IV. DIGITAL BACKGROUND TIMING

MISMATCH CALIBRATION

Based on the proposed split TI topology, a digital back-
ground timing-skew mismatch calibration algorithm will be
explored in this section. To explain this method, we also use
a three-/four-way TI ADC as an example.

A. Overview of Timing Mismatch Calibration

Fig. 6 shows the principles of the timing-skew calibration, it
exhibits the ADCB1 (one of the unit converters of ADCB) as
the reference to calibrate all the sub-channels in the ADCA
(ADCA1−A4). The goal of the calibration algorithm is to
determine the timing skew of all interleaved channels of
ADCA that is equal to those of the reference channel ADCB1.

DA,out,raw and DB,out,raw represent the raw outputs without
timing-skew correction from ADCA and ADCB, and their data

rate is 4 × fs/4 and 3 × fs/3, respectively. ADCB1 will meet
each sub-channel of ADCA (ADCA1−A4) every 12 cycles,
as shown in Fig. 5. A multi-path switch works at 4 × fs/12
to choose the output DA,out that corresponds to the output of
ADCA after timing-skew correction. Therefore, the corrected
data DA,out can be written as

DA,out = DA,out,raw − dVin(t)

dt
· �t (3)

where dVin(t)/dt is the derivative of the input and the �t is
the estimated timing skew of ADCA. In this article, we
use a digital finite impulse response (FIR) differentiator to
obtain dVin(t)/dt, as it will be discussed later. Then, it obtains
the current conversion error e defined as the difference of
the outputs between the unit converter of ADCA (DA,out)
and the corresponding one from ADCB1 (DB1,out,raw). The
LMS search block updates the coefficient of mismatch factors
effectively minimizing the difference e [8], [13]–[16]. Since
�t is not known in advance, it has to be estimated with the
LMS algorithm by digital accumulators (Acc) with the update
equation [14]

�t(new) = �t(old)+2·μ·dVin(t)

dt
· e (4)

where the step size μ controls the convergence speed and
accuracy of the LMS search.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 02,2020 at 03:50:35 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: 1.6-GS/s 12.2-mW SEVEN-/EIGHT-WAY SPLIT TI SAR ADC ACHIEVING 54.2-dB SNDR 697

Fig. 6. Timing-skew mismatch calibration of a three-/four-way split TI ADC for part A.

Fig. 7. Synchronous timing-skew mismatch calibration of a three-/four-way split TI ADC for parts A and B.

The mismatch calibration of ADCB is similar to ADCA,
as shown in Fig. 7. We consider the sub-converters of the
ADCB as the reference to correct each converter of the ADCA,
with the factors “3” and “4” interchanged. Furthermore,
we obtain the mismatch calibration of the ADCA and the
ADCB synchronously and independently.

After the timing-skew calibration of Fig. 7, the sub-
converters of ADCA and ADCB are both skew-free. However,
there is a timing skew �tAB between ADCA and ADCB, as
shown in Fig. 8. ADCA and ADCB are sampling the same
time-instance input, instead of working in a TI manner. The
final output of the split TI ADC (yA + yB)/2 represents the
interpolated samples at (tA + tB)/2. Thus, the final values of
the split TI ADC are also skew-free.

B. Implementation of the Derivative Filter

The performance of traditional digital correction methods
is usually limited by the differentiator [5], [14], and they do

Fig. 8. Split TI ADC after timing mismatch calibration.

not work well for input over Nyquist. For the differentiator,
with the help of a Hilbert transform filter, we can compute
the derivative of the input at about 90% (0.05–0.95) within
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Fig. 9. Frequency responses of the derivative filter (a) without/with Hilbert transform filter (25 taps, with Hamming window) and (b) with Hilbert transform
filter of the different number of taps.

any Nyquist band [17]. Now, let us analyze the details of
the differentiator considerations. Without loss of generality,
we can assume that the input is a sinusoidal signal as

x(t)|t=nT = sin(2π · fin,Nyq · t)|t=nT (5)

where fin,Nyq is the input frequency in the first Nyquist band.
Thus, the derivative of the signal is a product of cosine
function with 2π of input frequency as

x�(t)|t=nT = 2π · fin,Nyq · cos(2π · f in,Nyq · nT ). (6)

We can use a conventional FIR differentiator to get the
derivative. However, if we assume that the input frequency
is over the first Nyquist band as

x(t)|t=nT = sin{2π[ fin,Nyq+0.5 · (k−1)· fs ]t}|t=nT (7)

where k represents the input that is located in the kth Nyquist
band. Then, the derivative of the input can be expressed as

x �(t)|t=nT

= 2π · fin,Nyq · cos(2π · fin,Nyq · nT )

+(−1)k · π · (k − 1) · fs · cos(2π · fin,Nyq · nT ). (8)

If we still use the conventional FIR differentiator, it only
gets the first term of (8). To correct this error, we used a
differentiator with the help of the Hilbert transform filter [17]
here, as shown in Fig. 6. The Hilbert transform converts
the sin into “−cos” to obtain cos(2π · fin,Nyq · nT ). Thus,
we can supplement the missing part by adding the product
of the output of the Hilbert filter and the scaling factor
(−1)k · π · (k − 1) · fs ; here, we need to know k ahead of
time because the ADC cannot distinguish the signal in which
Nyquist band. Fig. 9 shows the frequency response of the
derivative filter with/without the Hilbert transform filter from
dc to 2 × fs .

A simple truncation of the number of coefficients to the
specified number of taps, in both FIR differentiator and
Hilbert Transform filter, does not lead to an optimal in-band
accuracy in the frequency response. Truncation is equivalent
to the multiplication of the filter coefficients by a rectangular
window, which is known to have big sidelobes in the frequency
domain. Hamming windows enable the lower sidelobes and
give better performance in the band, as shown in Fig. 9.
The coefficients of (2K + 1)-tap conventional digital FIR

differentiation filter [14] and Hilbert transform filter [17] with
window function can be expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

tapD
K−n = (−1)n+1 · 1

n
· WK−n, 1 ≤n ≤ K

tapD
K = 0

tapD
K+n = −(−1)n+1 · 1

n
· WK+n, 1 ≤n ≤ K

(9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tapH
K−n = 2

π
· 1

n
· sin

(π · n

2

)2 ·W K−n, 1≤n ≤ K

tapH
K = 0

tapH
K+n = − 2

π
· 1

n
· sin

(π · n

2

)2 · WK+n, 1≤n ≤ K

(10)

where tapD
m and tapH

m represents the mth tap coefficient
of differentiator and Hilbert transform filter, respectively,
WK±n is the coefficient of (K ± n)th taps of the window
function, and when it is with the Hamming window that can
be given by [14]

W Hamming
K±n = 0.54 − 0.46cos

[
2π

(
0.5− n

K

)]
, 1 ≤ n ≤ K .

(11)

The digital FIR differentiator and Hilbert transform filter
are the dominant hardware parts for the timing mismatch
calibration because of the number of multipliers as well as
FIR filter taps. From (9)–(11), we note that for a (2K +1)-tap
FIR filter for digital differentiator or Hilbert transform filter,
it holds for tapK+n = −tapK−n, 1 ≤ n ≤ K . Thus, the
coefficients of these taps are antisymmetric, and we can
use one multiplier to implement both tapK−n and tapK+n .
Fig. 10 shows an efficient way to implement an example of a
25-tap digital derivative filter with only 12 multipliers. There-
fore, the number of multipliers can be reduced by half.

As shown in Fig. 9, the frequency responses have an attenu-
ation for the frequency near n × 0.5 f s , where n = 1, 2, 3 . . .
The attenuation of the estimated derivative of input will not
significantly affect the accuracy of the algorithm as long as it
converges. Take (4) as an example, and if the estimation of
(dVin(t)/dt) has an error of 20% (i.e., the derivative is 0.8× of
its ideal value), then the LMS will estimate the �t(new) that is
1.25× larger than the actual timing skew in (4), and the final
calibrated DA,out in (3) is still correct. However, the atten-
uation of the filter coefficients near n × 0.5 fs makes the
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Fig. 10. Efficient 25-tap digital FIR filter implementation.

Fig. 11. Number of convergence samples versus the taps of FIR filter
(three-/four-way split TI ADC).

convergence step size of LMS smaller than the normal one,
as shown in (4). The term 2 · μ · (dVin(t)/dt) · e is decreased
by the attenuation of (dVin(t)/dt), and it will prolong the
convergence or even cause non-convergence.

Naturally, as shown in Fig. 7(b), the frequency response of
the digital FIR filter gets closer to the theoretical frequency
response with the increasing number of taps. However, both
area and power also increase linearly with the number of taps
for the digital FIR filter. We target the effective bandwidth of
ADC in the fourth Nyquist band, as well as in any Nyquist
band below fourth band and it can work well about 90%
(0.05–0.95) within the kth band. The worst case will appear
at where the input frequency is near 3 × 0.5 fs , as shown
in Fig. 9. A behavior simulation for a split three-/four-way
TI-ADC is shown in Fig. 11 to determine the number of
convergence samples required by timing-skew calibration
versus the different number of taps for two inputs of
2.95 × 0.5 fs and 3.05 × 0.5 fs . The number of convergence
samples increases with the reducing number of taps in digital
FIR filters, and the tap number of around 25 is a good
tradeoff between the convergence and the hardware overhead
by digital mismatch calibration.

V. ADC IMPLEMENTATION

A. ADC Architecture

To verify the proposed split TI ADC architecture, we imple-
mented a seven-/eight-way split TI-SAR ADC, as shown in
Figs. 12 and 13. The channel mismatch, including offset, gain,

and timing skew, calibrated in the digital domain off-chip,
as shown in Fig. 12. It consists of an eight-way TI-SAR ADCA
and a seven-way TI-SAR ADCB working at 200 and 228 MS/s,
respectively. The ADC has the input impedance matching
on-chip, as shown in Fig. 13 (blue line). To ensure the equal
distance to the time-interleaving channels, we use an H-tree
structure to route the input signals and clocks. Furthermore,
we shielded the master clock CLK-1.6G with the ground to
avoid interference through capacitive coupling with the input.

B. Phase Generator

The seven-/eight-way split-interleaved systems require
both eight and seven clock phases, each having a 12.5%
and 14.3% duty cycle, respectively. Fig. 14 shows the
phase generator where a 1.6-GHz master clock, divided by
eight-cycle or seven-cycle ring counters, generates the outputs
QA1–QA8 and QB1–QB7 for ADCA and ADCB, respectively.
The ring counter is composed of D-Flip-Flops (DFF)
connected to a shift register, being equivalent to a cascade
of tens of gates, accumulating significant jitter. We use the
master clock CLK-1.6G to retime QA1–QA8 and QB1–QB7
from the ring counters to get the low-jitter final sample clock
�A1−A8 and �B1−B7.

As shown in Fig. 14, we use the master–slave DFF to
build the ring counters. Therefore, it can obtain the output
Qn and Mn from the slave and master register of the nth DFF
for the ring counter, respectively. Fig. 15 shows the retiming
technique by a custom-implemented logic gate expressed as

�n = (C L K + Mn)Qn (12)

where the rising edge of the final sample clock phase �n

depends on the rising edge of Qn and the critical sampling
falling edge of �n is defined by the master clock CLK.
Thus, it not only removes the jitter and timing skew produced
by frequency-division circuits but also allows the use of the
minimized size logic gate for those DFF components. From
the post-layout transient-noise simulation, the total extracted
jitter of each sampling edge (�A1−A8 and �B1−B7) is close to
70-fs rms, dominated by the global clock buffer, and the total
power consumption of the phase generator is only 2.3 mW.
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Fig. 12. ADC architecture.

Fig. 13. Block diagram of seven-/eight-way split TI-SAR ADC.

Fig. 14. Phase generation.

C. Single-Channel SAR ADC
The single-channel SAR ADC is similar to the architecture

in [22]. Fig. 16 shows the architecture of the single-channel
SAR ADC, which consists of a comparator, bootstrapped
switches, DAC capacitor arrays, SAR control logic, and digital

error correction (DEC) logic. Similar to the previous works
[22], [23], the ADC sampled input signal on the top plates
of capacitor arrays, and the first MSB can be determined by
the polarity on the top plates. Therefore, the 10-bit ADC only
needs 29 capacitor cells in each capacitor array. The bottom
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Fig. 15. Retiming logic.

Fig. 16. Architecture and timing diagram of the single-channel SAR ADC.

plates of capacitors’ cells are either connected to the reference
voltage or ground. A CMOS inverter can perform the DAC
switching with very simple control logic. The ADC adds
one extra redundant bit cycles to alleviate the DAC settling
problem. The 29 capacitor cells will be arranged into ten
capacitor groups C1–C10 with the binary-scaled recombination
weighting method. It uses the custom-layout metal–oxide–
metal capacitor with a unit capacitance of ∼0.35 fF, and
the total single-ended input capacitance is 180 fF. Also,
an asynchronous control circuit [22], [23] is used to generate
the necessary clock signal internally in each single channel.
For each single-channel SAR ADC, it only needs one sampling
clock (CLKs) from the global clock generation.

D. Impact of Sampling by Timing Skew

For the split TI-ADC, there are two ADCs sampling the
input simultaneously. Due to the timing skew between two
ADCs, the turn-off time of sampling switches is a bit different.
As mentioned in [11], the bond-wire inductance makes the
driving current cannot track well the sudden impedance change
because of sampling switch turn-off sharply.

Now, we use the prototype seven-/eight-way split TI-ADC
as an example to analyze this problem. Let us talk about how
the sampling switch’s turn-off for ADCBi (i = 1, 2, . . . 7)
will impact the sampling of ADCA1. Fig. 17 shows the input
interface of ADC, where RM = 50 � is the resistance for input
impedance matching on-chip, Ceq = 3 pF is the equalized
capacitance to the GND including the capacitance (2.5 pF)
for ESD protection and parasitic of the PAD (500 fF), and

Fig. 17. Illustration showing the impact of input interface by sampling switch
turn-off.

Cs = 270 fF is the sampling capacitance for each single-
channel including the CADC (180 fF) and parasitic (90 fF).

Due to the shunt impedance (RM//Ceq) dominates the over-
all interface in both the low and high frequency, it absorbed
the kickback fluctuation from the switches, and there is no
obvious change of drive current IDrive. Therefore, the sam-
pling switch’s turn-off for ADCBi (i = 1, 2, . . . 7) event does
not fluctuate the sampling of ADCA1 significantly.

E. Offset and Gain Calibration

The offset and gain mismatches are calibrated by averaging
and variation functions as in [5] and [24]. First, the digital
codes of ADCA and ADCB off-chip are divided into eight
and seven channels by the demultiplexer (De-MUX). Then,
the codes are averaged by the mean function in each channel,
and the offset information is acquired [24]. Thus, the offset
mismatch is removed in the digital domain with code sub-
traction. The gain error is obtained by moving average (MA)
of absolute (ABS) values replacing the squaring operation to
reduce the hardware overhead [5], as shown in Fig. 18, where
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Fig. 18. Offset and gain calibration of seven-/eight-way split TI ADC.

Fig. 19. Prototype ADC microphotograph.

GA1−A8 and GB1−B7 are the gain factors of ADCA1−A8 and
ADCB1−B7, respectively. Finally, the gain factors of all other
channel ADCA2−A8 and ADCB1−B7 are normalized to ADCA1.

VI. EXPERIMENTAL RESULTS

The prototype seven-/eight-way split TI-SAR ADC,
fabricated in 28-nm CMOS, occupies a core area
of 370 × 210 μm2, with the chip microphotograph shown
in Fig. 19. The analog input and the clock are routed from the
left and right to the center, then traveling to the 8 × ADCA
and 7 × ADCB, respectively. We designed ADCA and ADCB
with a similar layout except for some digital control logic
circuits. We inserted a dummy SAR layout in the 7 × ADCA
to get a better matching regarding the boundary conditions,
while most of this part (capacitor array of the dummy SAR)

Fig. 20. Measured DNL and INL at a clock rate of 1.6 GS/s.

Fig. 21. Measured output spectrum with a sampling rate of 1.6 GS/s before
and after skew calibration.

can connect as the decoupling capacitance, in order not to
waste the dummy channel. The digital supply of the SAR
logic and other digital control circuits is 0.8 V, while the
analog supply of the clock generator, comparator, and DAC
switches is 0.9 V in order to obtain sufficient linearity and
low jitter of the input sampling. Besides, we also included
the reference power in the analog part, because we use
the analog supply directly as a reference. The total power
consumption of the ADC core is 12.2 mW (S/H, comparator
and DAC switches 51%, SAR logic and other digital control
circuits 30%, and clock generator 19%). The gate counts for
the digital background calibration are around 150k, which
results in an estimated power consumption of 7.6 mW with
a 0.8-V power supply and an area of 0.09 mm2 in 28-nm
CMOS. The total estimated power also includes the gain and
offset calibration.

Fig. 20 shows the measured DNL and INL at 1.6 GS/s,
indicating a maximum of 0.22 LSB for the former
and 0.51 LSB for the latter. Fig. 21 shows the mea-
sured dynamic performance at 1.6 GS/s before and after
timing mismatch calibration, indicating an SNDR/SFDR
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Fig. 22. Measured SNDR after skew calibration with an input of 2.52 GHz
during convergence (seven-/eight-way split TI ADC).

Fig. 23. Measured dynamic performance versus (a) sampling rate and
(b) input frequency.

TABLE I

PERFORMANCE SUMMARY AND COMPARISON WITH PREVIOUS WORKS

of 54.2 dB/67.1 dB with a 760-MHz input signal and the
SNDR/SFDR of 51.3 dB/63.5 dB at a 2.52-GHz input.
Fig. 22 shows the measured SNDR with a 2.52-GHz input at
1.6 GS/s during the convergence of timing-skew calibration.

The proposed calibration method improves the SNDR from
47 to 51.3 dB and converges within 80k samples.

Fig. 23(a) shows the dynamic performance versus sampling
rate with a 760-MHz input signal. The SNDR exhibits a
3-dB variation from 0.7- to 2.5-GHz input frequency with a
sampling rate of 1.6 GS/s [see Fig. 23(b)]. Table I shows the
performance summary and a comparison with similar state-
of-the-art TI-ADCs. The total power consumption with the
estimated digital background mismatch calibration is 19.8 mW
while reaching a Walden FOM of 29.5 fJ/conv.-step and a
Schreier FOM of 160.3 dB at Nyquist.

VII. CONCLUSION

This article proposed a split TI ADC topology with digital
background timing-skew calibration. The overall ADC consists
of two parts: part A with eight TI channels and part B with
seven channels. The errors between parts A and B are driven
and minimized by the LMS adaptation engine. The use of
a Hilbert transform filter extends the usable bandwidth of
this article much beyond the first Nyquist band. Important
advantages of this architecture are the constant ADC input
impedance that does not cause extra spurs. Using the concept,
a 1.6-GS/s seven-/eight-way split TI ADC achieves an SNDR
of 54.2 dB and an SFDR of 67.1 dB at the Nyquist rate, simul-
taneously with an effective resolution bandwidth (ERBW) over
2.5 GHz.
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