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Abstract
Objective. Real-time closed-loop neural feedback control requires the analysis of action 
potential traces within several milliseconds after they have been recorded from the brain. 
The current generation of spike clustering algorithms were mostly designed for off-line use 
and also require a significant amount of computational resources. A new spike clustering 
algorithm, termed ‘enhanced growing neural gas (EGNG)’, was therefore developed that is 
computationally lightweight and memory conserving. The EGNG algorithm can adapt to 
changes of the electrophysiological recording environment and can classify both pre-recorded 
and streaming action potentials. Approach. The algorithm only uses a small number of 
EGNG nodes and edges to learn the neural spike distributions which eliminates the need of 
retaining the neural data in the system memory to conserve computational resources. Most of 
the computations revolve around calculating Euclidian distances, which is computationally 
inexpensive and can be implemented in parallel using digital circuit technology. Main 
results. EGNG was evaluated off-line using both synthetic and pre-recorded neural spikes. 
Streaming synthetic neural spikes were also used to evaluate the ability of EGNG to classify 
action potentials in real-time. The algorithm was also implemented in hardware with a Field 
Programming Gate Array (FPGA) chip, and the worst-case clustering latency was 3.10 µs, 
allowing a minimum of 322 580 neural spikes to be clustered per second. Significance. The 
EGNG algorithm provides a viable solution to classification of neural spikes in real-time and 
can be implemented with limited computational resources as a front-end spike clustering unit 
for future tethered-free and miniaturized closed-loop neural feedback systems.

Keywords: spike sorting, electrophysiology, neural feedback control, in vivo, mutli-unit 
recording, single unit recording
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1.  Introduction

In the pursuit of realizing miniaturized and portable systems 
for closed-loop neural control, one of the major challenges 
is to develop robust data analysis algorithms for analyzing 
neural signals, which are computationally inexpensive, use 
less memory, and are energy efficient, [1–5]. During in vivo 
recordings, which are often combined with other techniques 
(such as behavioral testing), action potentials are commonly 
recorded extracellularly from a biological subject with one or 
more electrodes [6–10]. Under this extracellular configura-
tion, the electrode measures a time series of voltage signals 
containing extracellular action potentials originating from 
neighboring neurons. Ionic currents from a neuron that reach 
the recording electrode are highly dependent on the relative 
position between the electrode and the neuron, as well as the 
impedance of the extracellular fluid. Therefore, whenever sev-
eral nearby neurons contribute to this voltage recorded by the 
electrode, these contributions differ in their temporal shapes 
[7]. These temporal shape differences are then used by spike 
sorting algorithms to classify neural spikes to the respective 
neurons.

For the past decade, several robust spike clustering algo-
rithms were developed to classify pre-recorded neural activity 
in an off-line manner [11–17]. However, there is a growing 
need in neuroscience to perform spike clustering in real time 
in order to facilitate more sophisticated experimental testing 
but more importantly, to intervene and control neural activity 
in a closed loop manner based on brain state [4, 18–20]. 
Particularly with the advance of optogenetics, neurons can 
now be precisely stimulated or inhibited with proper combi-
nations of optogenetic proteins, optical illumination wave-
lengths, and specific promotors, opening up new opportunities 
to conduct neuroscience experiments in a closed-loop manner 
[21–23]. However, in order to successfully modulate a neural 
circuit, the analysis and processing time can be no longer than 
several milliseconds, creating a significant technical challenge 
[4, 20]. In addition, most spike clustering algorithms were not 
designed to classify streaming neural spikes in real-time; thus 
developing new spike clustering algorithms that can classify 
streaming neural data in real-time accurately, rapidly, and 
adaptively is an important step for closed-loop neural controls.

There has been a sustained effort to develop better neural 
spike clustering algorithms. Reviews of various off-line spike 
clustering techniques can be found in [12, 24]. Generally 
speaking, spike clustering refers to associating each cluster 
with their respective firing neurons. The so-called ‘hard clus-
tering’ methods assume the clusters are Gaussian distributed 
and the overall neural distribution is a sum of the Gaussian 
clusters in which k-means and its variations fall into this cate-
gory. Other ‘soft-clustering’ techniques, including expectation 
maximization (EM), allow overlapping between these clusters 
to approximate the cluster distribution, within a given number 
of clusters [25]. Super-paramagnetic cluster (SPC) is another 
approach which borrows the physical concept of magnetic 
thermal interaction and models neural spikes as magnetic spin 
elements. At the transition temperature between paramagnetic 
and ferromagnetic states, the neural distribution fractures into 

different clusters and this concept is used for spike classifi-
cation [26]. In addition, recent spike clustering developments 
have been focused on classifying massive amounts of neural 
data recorded from multielectrode arrays (MEAs). These algo-
rithms require powerful computers with multiple central and 
graphical processors to classify the large amount of data col-
lected off-line. For example, Masked-EM was recently applied 
to handle large amounts of neural spikes recorded from a MEA 
by introducing a geometric mask to reduce the data dimen-
sionality [13]. ISO-SPLIT is another automatic spike clus-
tering algorithm that projects the high-dimensional data onto 
the principal axes and finds the cluster boundaries by fitting 
to these projections [15]. ISO-SPLIT also eliminates the need 
for human intervention to allow a higher degree of automation. 
While these techniques are powerful, they are not designed to 
classify streaming neural spikes in real-time. In addition, these 
techniques require the retention of all the data in the system 
memory to compute the data recursively, making these tech-
niques unsuitable for spike clustering in real-time with lim-
ited computing resources. On the hardware side, there were 
some recent exciting advancements. Q-sort was the earliest 
spike clustering algorithm designed for FPGA hardware but 
the algorithm is a simple classifier that does not take advantage 
of computational parallelism, nor does it have the capability to 
adapt to changes of the electrophysiological environment [17, 
27]. Template matching is another recent approach in which 
spike cluster templates were learned during a training period 
and subsequent spikes are matched to these cluster templates 
for rapid sorting. Luan et al developed a 32-channel compact 
FPGA system utilizing template matching for real-time rapid 
spike sorting and tested the system to record the M1 region 
from a non-human primate; however, the system required a 
computer tethered to the FPGA to calculate the cluster tem-
plates during the training period [28]. Park et al developed a 
128 channel FPGA system which can perform the template 
learning within the FPGA but their template generation algo-
rithm lacks the ability to adapt to changes in spike shape during 
long measurement periods [29].

In this paper, our goal was to develop a neural spike clus-
tering algorithm—enhanced growing neural gas (EGNG)—
that can classify streaming neural spikes in real-time and 
provide immediate classified information for downstream 
neural decoding. The algorithm is also compatible with the 
design methodology and the parallel computation capability 
of modern digital integrated circuit technologies to allow 
hardware implementation in a field programmable gate array 
(FPGA) or an application-specific integrated circuit (ASIC) 
[21, 30]. The advantage of using this digital logic approach 
over general purpose processors (CPU) is that dedicated hard-
ware logic can be built to perform parallel computations. In 
addition, EGNG can self-adapt to neurophysiological changes 
in real-time, such as new neural spike shapes appearing, to 
allow the clustering to be continually corrected.

During neural recordings, the electrode may move slightly 
within the brain due to physical movements or inflammatory 
responses, especially during long-term recordings. Thus, the 
temporal shapes of the neural spikes can change over time. 
In addition, neural spikes with new temporal shapes may be 
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picked up by the electrode as it moves closer to some neurons 
that had no contribution to the recording waveform previously. 
Alternatively, a cluster may become obsolete when the elec-
trode drifts too far away from a neuron. Therefore, clustering 
algorithms have to be able to adapt in order to handle these 
changes properly and EGNG was especially designed to have 
the capability to adapt to these changes. In addition, it has 
been suggested that the assumption that neural clusters have 
to be Gaussian distributed should be lifted in order to allow 
for handling of non-conventional noises [31, 32], and EGNG 
does not require the neural clusters to be Gaussian distributed.

In this paper, we present the EGNG algorithm which is spe-
cifically designed to perform neural spike clustering for both 
off-line and real-time situations, as well as the implementa-
tion of the EGNG algorithm in hardware using an FPGA to 
evaluate its clustering capability for real-time action poten-
tials. The EGNG algorithm is computationally inexpensive 
with minimal requirements for processing power and system 
memory. The EGNG algorithm is designed to fit the needs for 
both off-line and real-time neural spike clustering, and can be 
used as a front-end spike clustering algorithm for downstream 
data analysis in closed-loop neural controls.

2. The EGNG algorithm and evaluation data

The EGNG algorithm has improved upon the original growing 
neural gas (GNG) algorithm developed by Bernd Fritzke [31, 
33]. The original GNG algorithm is an unsupervised clustering 
algorithm which can be used to differentiate unconnected 
cluster groups in the vector space and therefore, the original 
GNG algorithm should in principle be able to classify spike 
clusters. However, the original GNG algorithm is an off-line 
algorithm which was not designed to handle streaming neural 
data in real-time. In addition, the original GNG algorithm 
does not handle terminal criteria well enough to properly sep-
arate closely spaced cluster groups for off-line pre-recorded 
neural data. Therefore, we modified and enhanced the original 
algorithm in several areas to allow the algorithm to classify 
both pre-recorded and streaming neural spikes. In addition, 
with these enhancements, the algorithm can automatically 
adapt to changes of the electrophysiology environment to 
correctly classify neural spikes. Compared to other simpler 
spike sorting algorithms, such as k-means [34], EGNG does 
not require neural clusters to be Gaussian-distributed, and can 
automatically determine the total number of clusters without 
user input. The algorithm can also distinguish neural spikes 
and reject noise outliers. In this section, the working principle 
of the EGNG algorithm and how the algorithm can be used to 
classify neural spikes for both off-line pre-recorded and real-
time streaming neural spikes are discussed.

2.1. The EGNG algorithm

Similar to other spike sorting algorithms, neural spikes mea-
sured in the time domain are first transformed onto a multi-
dimensional vector space using techniques such as principal 
component analysis (PCA) or wavelet transformation [12]. In 

this manner, neural spikes are transformed into neural points in 
a multi-dimensional vector space constructed by a chosen set 
of basis functions. EGNG does not handle the pre-processing 
steps in spike sorting, including spike detection, isolation, and 
transformation, but focuses on classifying the neural clus-
ters once they have been properly processed and transformed 
using conventional methods. Here the term ‘neural point’ is 
defined as the feature vector in the vector space transformed 
from a neural spike in the time domain. Neural points with 
similar temporal spike profiles are consequentially clustered 
together into a group in the vector space. Therefore, the prin-
ciple of the EGNG algorithm is to cover these neighboring 
neural points with EGNG nodes and interconnect them with 
EGNG edges to form EGNG clusters. In this way, EGNG can 
be considered as a process of forming clusters using EGNG 
nodes and edges on top of the distribution of neural data, and 
to constantly adapt and follow changes of the data distribution 
in the vector space.

2.1.1.  Off-line EGNG to classify pre-recorded neural 
spikes.  Figure 1 illustrates the EGNG algorithm configured 
to classify neural spikes off-line. In this off-line clustering 
configuration, neural spikes are pre-recorded and classified 
after the experiment has concluded. Consequentially, the 
EGNG algorithm does not need to be limited in terms of com-
puting resources. Both computing power and memory are 
considered abundant such that all the neural data points can be 
stored in the system memory for recursive processing, in con-
trast to the case of classifying streaming neural data in real-
time (see below). The parameters for the EGNG algorithm 
and the values used in this paper for classification are listed 
in table 1. Generally, only the maximum node count (NEGNG) 
and the edge pruning threshold (ath) are sensitive to the clas-
sification results. More discussion on the value selections of 
the parameters can be found in the supplementary information 
(stacks.iop.org/JNE/16/056007/mmedia).

The steps for off-line EGNG to classify pre-recorded 
neural spikes are illustrated in figure 1. Note that steps (1) to 
(5) were developed in the original GNG algorithm and step 
(6) is the new enhancement for better termination criteria to 
separate closely-packed neural clusters.

	(1)	�Initialization: Several EGNG nodes connected by 
EGNG edges are randomly generated and placed among 
the neural data in the vector space. The locations of the 
EGNG nodes are denoted as wj and the number of EGNG 
nodes created is denoted as N .

	(2)	�Finding the closest EGNG node: A neural point xi is 
randomly selected among the entire neural data distribu-
tion. The Euclidian distances (dj = ‖xi − wj‖) between 
the selected neural data point (xi) and all the EGNG 
nodes (wj) are then calculated. The EGNG nodes with 
the shortest and second shortest Euclidean distances are 
denoted as S1 and S2.

S1 = argminwj∈N(dj)

S2 = argminwj∈N\{S1}(dj)

J. Neural Eng. 16 (2019) 056007
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Figure 1.  Illustration of the EGNG algorithm for sorting pre-recorded neural spikes off-line. (a) (Steps 1–3) At the beginning of the 
algorithm, a few EGNG nodes were generated and connected by EGNG edges. The closest EGNG node (S1) and its neighboring nodes 
moved closer to a neural point (xi) with different movement rates. (b) (Step 4) If the total number of EGNG nodes is less than the 
maximum node count (NEGNG), a new EGNG node (Sn) is inserted between the node with the largest insertion value (insertse) Se and its 
closest neighboring EGNG node (Se′). (c) (Step 5) As the EGNG tree grows larger covering the entire neural point distribution, EGNG 
edges connecting different neural clusters need to be pruned. For a neural point (xi), the age of the edge between the closest (s1) and the 
second closest (s2) EGNG nodes (as1, S2) to is reset to zero, but the age of other neighboring edges to s1 (as1, sj) are increased by 1. (d) (Step 
5) When the age of an edge reaches the age threshold (a > ath), the aged edge is pruned. Edges which are longer than the average edge 
length are considered long edges and will be pruned to help separate clusters. In addition, an edge is considered as a low-density edge if the 
average distance of the center of the edge to the five closest EGNG nodes is longer than the average.

Table 1.  Parameters of the EGNG algorithm. The values used in the manuscript and the typical ranges of the parameters are listed.

Parameters Values used in this manuscript Typical ranges

Maximum node count 
(NEGNG)

10–15 for most dataset and 100 for ring dataset 3 to max (depends on the data)

Edge pruning threshold (ath) 4–8 for most dataset and 30 for ring dataset A fraction of total node count (e.g. half or one-third).
Number of initial nodes (N ) 2 2
Moving rate of S1 (es1) 0.1 (0, 1)

Moving rates of Sj (enbr) 0.006 (0, 1), es1 > enbr

Insert parameter reduce rate 
of we and w′

e nodes (α)
0.5 (0, 1)

Insert parameter reduce rate 
of other nodes (β)

0.01 (0, 1)

Number of iterations before 
inserting a new node (λ)

10 5–50

J. Neural Eng. 16 (2019) 056007
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		 If the two closest EGNG nodes (S1 and S2) have not been 
connected by an EGNG edge, a new EGNG edge is con-
structed to connect them.

	(3)	�Moving the closest EGNG node and its neighboring 
nodes closer to the neural point xi: A neighboring node 
is another EGNG node that connects to an EGNG node 
directly by an EGNG edge, without another EGNG node 
crossed in between. In this step, Sj are denoted as all the 
neighboring nodes to the closest EGNG node (S1). S1 and 
all Sj are moved closer towards the neural data point (xi), 
but with different moving rates.

S1 ← S1 + es1(xi − S1)

Sj ← Sj + enbr (xi − Sj)

where es1 , enbr ∈ (0, 1) are the moving rates of S1 and Sj, where 
es1 > enbr .

An ‘Insertion’ parameter (insertwi) is used to determine 
where a new EGNG node should be inserted. After S1 has 
moved toward xi, inserts1 is increased by

inserts1 ← inserts1 + ‖xi − s1‖2.

	(4)	� Insertion of a new EGNG node using the insertion 
parameter: If the number of total EGNG nodes is less 
than the maximum node count (NEGNG), a new EGNG 
node is added after λ of iteration. The EGNG node with 
the highest insertion and one of its neighbors with the 
highest insertion among all the neighboring nodes will 
be identified, and the positions of the two EGNG nodes 
are denoted as we and w′

e. The position of the new EGNG 
node (wN) is equal to

wN =
1
2
(we + we′).

EGNG will prune the EGNG edge connecting we and 
w′

e and will create two new EGNG edges connecting 
between we and wN and between we′ and wN. After the 
insertion, the insertion parameters of the two nodes are 
reduced to avoid repetitive EGNG node creation,

insertwe ← α · insertwe

insertwe′ ← α · insertw′
e

insertwN ← insertwe .

		 In addition, the insertion parameters of all the other 
EGNG nodes are reduced by β, where α,β ∈ (0, 1) are 
the insertion reduction rates.

	(5)	Edge pruning with the age parameter: If the EGNG 
edge is spanning over an area with few neural points, the 
EGNG edge will be removed to allow cluster separation. 
In order to allow pruning, an ‘age’ parameter (ak) is 
assigned to all EGNG edges to determine if an EGNG 
edge should be pruned. For the EGNG edge connecting 
(S1 and S2), the age (aS1,S2) of this edge is reset to zero, 

indicating this edge is close to the neural point (xi) and 
the EGNG edge should be retained.

aS1,S2 ← 0.

		  However, for other neighboring EGNG edges connecting 
Sj to S1 , the ages (as1,Sj) of these edges are increased by 
1, indicating that these edges are farther away from the 
neural point (xi), leading to a higher chance of being 
eventually pruned.

as1,Sj ← as1,Sj + 1.

		 With this strategy, the ages of remote EGNG edges will 
be steadily increased. When the age of an edge is higher 
than the edge pruning threshold (ath (aSi,Sj > ath)), the 
EGNG edge is pruned to allow cluster separation.

	(6)	Termination criteria: After all the neural points have been 
processed and if the number of EGNG nodes (N ) created 
is less than the maximum node count (NEGNG), the neural 
points will be processed one more time to allow all the 
EGNG nodes to be generated for better clustering. After 
all the EGNG nodes are generated, the EGNG clustering 
will be terminated. This termination criteria generally 
results in well-separated EGNG clusters if the neural 
clusters are far from one another and the neural points 
are densely clustered in the cluster centers. However, if 
the neural clusters are close to one another and the cluster 
centers are not densely packed, this termination criteria is 
not strong enough to ensure sufficient separation between 
neural clusters. For this reason, two strategies—removing 
long edges and removing low-density edges—are used to 
allow the EGNG algorithm to better separate the neural 
clusters even if they are loosely packed and close to one 
another. Closely-packed and loose neural data distribu-
tions are common for actual electrophysiology recordings 
in animals.

	(a)	� Removing long edges: The length of an EGNG edge 
is lwi,wj = ‖wj − wi‖. The EGNG edge is removed if 
its length (lwi,wj) is larger than the average length of 
all the EGNG edges (lave), that is lwi,wj > lave.

	(b)	� Removing low-density edges: The average Euclidian 
distance of five neural points closest to the middle 
point of an EGNG edge is calculated as lmid, and lmid 
is the average lmid of all the EGNG edges. An EGNG 
edge is considered as a low-density edge and needed 
to be removed if lmid > lmid .

2.1.2.  On-line EGNG to classify streaming neural spikes.  The 
EGNG algorithm for on-line sorting is designed to classify 
streaming neural spikes rapidly and accurately with limited 
processing power and memory. The limited use of computa-
tional power and memory allow for hardware miniaturization 
to fit all the necessary circuits into a small FPGA or ASIC 
to avoid cable tethering to a main computer. Another benefit 
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of rapid spike sorting is that it may enable immediate neural 
decoding such that the decoded information can be used to 
drive closed-loop neural feedback control, such as optogenetic 
stimulation or inhibition. Unlike off-line EGNG where all the 
neural points are stored in the memory and processed recur-
sively, real-time EGNG does not retain the neural points in the 
memory once they are processed. Instead, EGNG learns the 
cluster distribution from the neural points and only stores the 
learned distribution into the EGNG node positions and edge 
connections. This approach is similar to Bayesian inference 
in which the streaming of neural points serve as priors, and 
the EGNG clusters will approximate the neural data distribu-
tion as more and more spikes are streamed in and processed, 
resulting in more accurate classifications for subsequent 
neural spikes [35]. Figure 2 illustrates the process of on-line 
EGNG, as well as showing how the algorithm can adapt to 
changes of the neural data distribution dynamically.

	(1)	Update of the EGNG nodes based on the incoming 
neural spike: Unlike off-line clustering where all neural 
points are available, in real-time clustering, neural spikes 
are recorded and streamed into the algorithm individually 
and sequentially. Despite this acquisition difference, the 
basic EGNG algorithm of creating, deleting, and moving 
EGNG nodes and edges is the same in both modes. 
However, in real-time sorting, steps 1 to 6 of the off-line 
mode will be used continuously to build up the EGNG 

clusters, as shown in figures 2(a) and (b). The main dif-
ference is that instead of selecting a neural point xi from 
the pre-recorded data pool, the neural point xi is now the 
most recently streamed-in neural point.

	(2)	�Immediate classification of the incoming neural 
spike: Immediate classification of the neural spikes is 
particularly important to allow downstream data analysis 
to estimate brain state and respond with proper interven-
tions. Therefore, the classification of the incoming data 
point is performed immediately by determining which 
EGNG cluster is closest to the neural point. To realize 
this, EGNG calculates the Euclidean distances between 
the new neural point xi and all the EGNG nodes wj,

dj = ‖xi − wj‖ , j = 1 . . .N.

		 The EGNG node with the shortest distance to the new 
neural point xi is identified and the classification is based 
on identifying the EGNG cluster containing this EGNG 
node.

	(3)	Movement of EGNG clusters: If the temporal shape 
of a neural cluster has changed over time due to probe 
movements or other electrophysiological reasons, the 
closest EGNG cluster will move towards the new posi-
tion, as shown in figure 2(c). This movement is facilitated 
by the normal EGNG node movement towards the most 

Figure 2.  Illustration of the EGNG algorithm sorting streaming neural spikes in real-time. (a) At the beginning of the sorting, very few 
neural points are streamed in and only a few EGNG nodes are created. The closest EGNG node (s1) and its neighing nodes are moved 
towards the incoming neural point (blue). (b) The methods to add an EGNG node and to prune an EGNG edge are the same as in off-
line mode. A stable EGNG cluster distribution will emerge after enough neural points are processed, allowing correct classification for 
subsequent incoming neural spikes. (c) The EGNG cluster can move towards a new position if the temporal shape of the neural spikes 
changes for continuous correct classification. (d) A new EGNG cluster can be formed if a steady stream of neural points appears in a more 
distant location by the regular EGNG edge pruning. (e) An existing EGNG cluster can be eliminated if no neural points are coming in for 
the cluster group for an extended period of time. (f) A neural point (xi) having a Euclidean distance to the shortest EGNG node (d1) shorter 
than the average Euclidean distance of all EGNG points (d1 < dave) is immediately classified as belonging to the EGNG group with the 
closest EGNG node. In contrast, a neural point (x′i) having a Euclidean distance to the closest EGNG node (d1) longer than the average 
Euclidean distance of all EGNG points (d1 > dave) is classified as noise.
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recent neural points. This adaptability allows continued 
correct classification of the neural data, even if the tem-
poral shape of the neural spikes has changed, which is 
particularly important for long-term recording.

	(4)	Deletion of obsolete EGNG clusters: Similarly, if neural 
spikes from a particular neuron are no longer recorded by 
the electrode, the corresponding EGNG cluster will be 
removed automatically. For the EGNG cluster no longer 
receives new incoming neural spikes, EGNG nodes and 
edges are deleted once the age parameters are matured. 
This removal process results in the complete deletion of 
the obsolete EGNG cluster, as shown in figure 2(e).

	(5)	Creation of new EGNG cluster and rejection of noisy 
signals: Neural points can appear far away from existing 
EGNG clusters for two reasons. The first is that these 
neural points belong to a new cluster which the electrode 
was not able to pick up previously. The second reason is 
that these neural points are actually noise signals which 
exceed the spike threshold and thereby enter the clus-
tering algorithm inappropriately. In order to differentiate 
between these two conditions, the shortest Euclidian 
distance between the neural point and the EGNG nodes 
is calculated, and if this distance is larger than the out-
lier threshold dout , this neural point is considered as an 
outlier. The EGNG algorithm will further calculate the 
running average position xave of these outliers with

xave ←
xi

Nout
+

Nout − 1
Nout

xave

where Nout is the number of recent outliers for the average. 
For the subsequent streaming neural points, if the Euclidian 
distance between the neural point and the running average 
xave is larger than the noise rejection threshold dn, the 
neural point is categorized as noise and discarded from the 
algorithm. However, if the Euclidian distance of the outlier 
is smaller than dn, the outlier is considered as a neural point 
that belongs to a new neuronal recording, and the loca-
tion of the neural point will be retained in the system. In 
addition, if the total count of these retained neural points 
has reached the new cluster creation threshold Nc, a new 
EGNG cluster will be created around these retained neural 
points. Once the new EGNG cluster has been created, these 
few retained neural points will be discarded to save system 
memory. Neural points belonging to this new cell subse-
quently streamed into the algorithm will be correctly cat-
egorized due to the creation of the new EGNG cluster.

2.2.  Simulated and pre-recorded electrophysiology neural 
data for evaluating EGNG

Both simulated and pre-recorded electrophysiology data were 
used to evaluate the performance and accuracy of the EGNG 
algorithm for both the off-line and the real-time modes, as 
well as the FPGA hardware implementation of EGNG. The 
same data were also used to compare EGNG to four other 
existing off-line spike sorting algorithms for classification 
accuracies and processing times.

2.2.1.  Simulated neural data.  The off-line EGNG algorithm 
was first evaluated with a simulated data set containing five 
Gaussian clusters, each with 200, 150, 150, 100 and 100 neu-
ral points, respectively. Three of these Gaussian clusters are 
circularly distributed and the remaining two are elliptically 
distributed [36]. Another set of simulated data distributed as 
three concentric rings were used to test whether the EGNG 
algorithm can handle non-Gaussian data distributions. The 
three concentric rings have radii of 1.0, 2.0 and 3.0 containing 
4800, 3200 and 1600 data points with a Gaussian standard 
derivation of 0.14 [16]. The noisy moon data were also used 
to compare the EGNG algorithm to four other clustering algo-
rithms (see below) and the data set was generated using the 
make_moons function in the scikit-learn library with a total of 
1500 sample data points [37]. In order to test the on-line clus-
tering capability of the EGNG algorithm implemented in both 
software and hardware, another set of simulated data obtained 
from [26] was used as streaming neural data. The data set 
contains 1440 000 data points and only the first 200 000 data 
points were used for the elevation. The data set were also 
used to evaluate the EGNG hardware implementation with an 
FPGA chip and the hardware clustering result was compared 
to that generated by the software implementation.

2.2.2.  Pre-recorded neural data.  The algorithm was also 
tested with actual neural data. All experimental procedures 
complied with all applicable laws and National Institutes 
of Health guidelines and were approved by the University 
of Colorado Institutional Animal Care and Use Committee 
(IACUC). The details of the experimental setup and the record-
ing procedure were discussed in our previous publication [21] 
and are not repeated here in detail. In brief, the extracellular 
voltage trace was recorded with a high-impedance Tungsten 
metal electrode (WEPT33.0B10, MicroProbes, Gaithersburg, 
MD, USA). The electrode was placed into the fiber tract of the 
fifth (trigeminal) nerve within the brain stem of an anesthe-
tized Mongolian gerbil (Meriones unguiculatus), and the neu-
ral spikes recorded had an average signal-to-noise ratio (SNR) 
of 2.7. This relatively low SNR was used intentionally to test 
the clustering capabilities of the algorithm. Individual neural 
spikes were isolated from the recorded trace through setting a 
threshold two times above the noise average and subsequently 
converted to feature vectors using PCA before sending to the 
EGNG algorithm for clustering.

2.2.3.  Publically available neural data sets.  Two publically 
available neural data sets were used to further evaluate the 
classification capability of the off-line EGNG algorithm. The 
first data set (hc-1, animal: 166, file: d16613.001.dat) was 
recorded from the CA1 hippocampal region and was devel-
oped as a benchmark for spike detection and sorting [38, 39]. 
The neural spikes were isolated by a threshold of two times 
above the noise level, and were converted to neural points in 
the vector space using PCA, followed by EGNG classifica-
tion. The second data set (NCHybrid136) of [40] were con-
structed from two neural datasets on a 32-channel probe in 
the rat cortex. Since the second data set contains 32 chan-
nels, channel 3 was randomly chosen for the analysis. The 
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recording was initially processed by a 5th-order Butterworth 
high-pass filter with a cut-off frequency of 200 Hz to remove 
the low-frequency local field potential component, followed 
by a threshold of two times above the noise average to isolate 
the neural spikes. A total of 1902 neural spikes were isolated 
from the first 500 000 data points of the recording and was 
converted to the vector space into neural points using PCA for 
EGNG classification.

2.3.  Comparing EGNG to other off-line clustering algorithms

The EGNG algorithm in off-line mode was compared to four 
other off-line clustering techniques—Density-Based Spatial 
clustering of Applications with Noise (DBSCAN), K-means, 
EM, and SPC—to evaluate the performance of these algo-
rithms compared to EGNG. DBSCAN considers data points 
with close Euclidian distances as neighbors and assigns 
these neighbors as a group if the local density is higher than 
a threshold. Otherwise, the neighbors are considered as out-
liers [41]. K-mean assumes neural clusters are Gaussian dis-
tributed with a known total number of clusters, and moves 
the centers of these Gaussian clusters towards the centers of 
the neural points in order to best cover them [34]. EM is one 
of the so-called ‘soft clustering methods’ which applies two 
steps—the expectation (E) step and the maximization (M) 
step—iteratively to maximize the posteriori (MAP) or max-
imum likelihood (ML) estimates for the Gaussian clusters to 

best cover the neural distribution [42]. Custom python code 
was written for DBSCAN, K-means and EM using the built-
in functions of the scikit-learn library [37] and the software 
package Wave_Clus was used for SPC classification [26, 43]. 
The aforementioned simulated data sets were fed into the 
algorithms for result comparisons with off-line EGNG.

3.  Results

The spike sorting capabilities of the EGNG algorithm for both 
off-line and on-line modes are demonstrated and evaluated 
in this section. For the off-line mode, the evaluations were 
focused on demonstrating the sorting accuracy and the ability 
to handle non-Gaussian distributed clusters. Simulated and 
actual pre-recorded neural data were used for the evaluations 
and the EGNG algorithm was also compared to four other off-
line sorting algorithms. For the on-line mode, the ability of the 
EGNG algorithm to rapidly classify streaming neural data was 
demonstrated in both software and hardware implementations. 
In addition, the flexibility of the EGNG algorithm to correctly 
and continually classify neural spikes, even in cases where 
the distributions are changing, was demonstrated in software.

3.1.  EGNG algorithm to classify off-line simulated neural data

Figure 3 demonstrates the EGNG algorithm in off-line mode 
when classifying simulated neural data (grey dots) belonging 

Figure 3.  EGNG algorithm to sort neural spikes in off-line mode. (a) Artificially generated neural points (grey dots) simulating neural 
spikes generated from five different nearby neurons. (b) Three EGNG nodes (red) were interconnected by two EGNG edges (blue line) 
at the beginning of the algorithm. (c) More EGNG nodes were generated to distribute across the entire distribution of neural data. Edge 
pruning has also occurred to separate an EGNG cluster away from the main EGNG tree. (d) At the end of the algorithm, five EGNG 
clusters were formed and the neural points were classified by identifying the nearest EGNG node (five colors representing five separated 
cluster groups).
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to five different neurons. Five non-overlapping neural clusters 
were distributed across the vector space as shown in figure 3(a). 
At the beginning of the classification, there were only three 
EGNG nodes (red dots) interconnected by two EGNG edges 
(blue lines) among the neural data as in figure 3(b). As the clus-
tering proceeds, as shown in figure 3(c), more EGNG nodes 
and edges were generated to loosely cover the entire neural 
distribution with EGNG nodes still interconnecting with one 
another. By the end of the clustering, some EGNG edges were 
pruned and the EGNG nodes were separated into five different 
EGNG clusters. At the point, the Euclidian distances from the 
neural points to their closest EGNG nodes were determined. 
The neural points were classified based on the EGNG cluster 
containing the closest EGNG node to the neural point. For 
demonstration purposes, neural points belonging to the same 
cluster were labeled with the same color for easy identifica-
tion in figure 3(d).

3.2.  EGNG algorithm is robust for clustering non-Gaussian 
neural spikes

The EGNG algorithm makes no presumption about the nature 
of the data distribution and is robust in classifying neural 
clusters with non-Gaussian distributions. Figure  4(a) shows 

synthetic neural points distributed in three concentric rings. 
At the beginning, EGNG nodes were randomly generated and 
interconnected by EGNG edges covering the three rings as one 
large group. After some iterations, the EGNG edges between 
the rings were pruned and resulted in three concentric EGNG 
circles. Figure 4(b) shows the final classification results indi-
cating that the neural points were successfully classified into 
three separate clusters and labeled with three different colors 
to indicate which EGNG cluster the points were classified.

3.3.  EGNG algorithm can classify closely packed neural 
clusters

Figure 5(a) is the result of using the EGNG algorithm to clas-
sify simulated neural points distributed in four neural clusters. 
Despite the four neural clusters being close to one another, 
there were still low-density gaps between the clusters to allow 
them to be separated. In order to test the capability of the 
EGNG algorithm to classify closely spaced neural clusters, 
additional Gaussian noise with a variance of 0.16 was added 
to make the neural clusters overlap closer. With the help of 
edge pruning at low-density areas, the EGNG algorithm can 
separate the neural clusters successfully, as demonstrated in 
figure 5(b).

Figure 4.  EGNG algorithm to sort non-Gaussian distributed neural points. (a) Three concentrically distributed neural groups were 
generated with radii of 3.0, 2.0, and 1.0 with a Gaussian noise standard deviation of 0.14. (b) The EGNG algorithm separated the concentric 
rings and correctly classified the neural spikes.

Figure 5.  The EGNG algorithm can correctly classify closed-packed neural clusters. (a) Loosely spaced neural groups were successfully 
separately by the EGNG algorithm. (b) Additional normally distributed noise was added to the four neural groups to allow the groups to 
stay much closer together to a degree where the two top left groups were about to merge together. Despite the small separations, the EGNG 
algorithm can still successfully separate the four neural groups.
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3.4.  Neural spikes recorded from an anesthetized gerbil  
correctly classified by the EGNG algorithm

Pre-recorded neural spikes measured from the fiber tract of 
the fifth cranial nerve of an anesthetized gerbil were used to 
demonstrate the sorting capability of the EGNG algorithm for 
real neural data. The temporal shapes of the recorded neural 
spikes have similar structures of a prominent negative peak, 
making the ground truth determination of the classification 
challenging, and the classification accuracy therefore cannot 
be calculated. The EGNG algorithm, however, determined 
that there were two separable clusters, with one cluster having 
larger negative peaks than those of the other cluster, as shown 
in figures 6(d) and (e). At the beginning of the sort, EGNG 
nodes were all connected together forming a large EGNG 
cluster covering the entire neural data, as shown in both fig-
ures 6(a) and (b). The EGNG algorithm, however, took advan-
tage of the fact that the density of neural points were more 
concentrated in the cluster centers than the perimeters, and the 
EGNG nodes were then separated at the boundary and finally 
broken into two disconnected clusters, as shown in figure 6(c). 
It is worth mentioning that the lower cluster fired about twice 
as often compared to the upper cluster and also neural spikes 
of the lower cluster had much worse signal-to-noise ratio than 

those of the upper clusters. Given that the similar temporal 
structures, these neural spikes could have been difficult to be 
sorted, but EGNG handled them well and was able to separate 
them into two closely packed clusters.

3.5.  EGNG Classification of publically available neural data 
sets

Figure 7 shows the results of the EGNG classification results 
for both the hc-1 (a) and NCHybrid136 (d) data sets, and both 
of the data sets resulted in two EGNG clusters respectively. 
The corresponding temporal waveforms and the calculated 
waveform averages of the clusters were also plotted in fig-
ures 7(b) and (c) for the hc-1 data set, and in figures 7(e) and 
(f) for the NCHybrid136 data set. The waveform averages 
showed distinctive differences between the different clusters 
of neural spikes.

3.6.  Comparing EGNG to other common clustering  
algorithms

In this section, the EGNG algorithm was compared to four 
other commonly used clustering algorithms (DBSCAN, 

Figure 6.  Pre-recorded real neural spikes were correctly sorted by the EGNG algorithm. (a) EGNG nodes were connected together as 
a single large EGNG group at the beginning of the sort. (b) The EGNG nodes were pulled towards the areas with higher concentrations 
of neural spikes. (c) The EGNG edge between the two neural groups was pruned to correctly separate the neural spikes into two EGNG 
clusters. (d) Shows the temporal waveforms and the waveform averages of the two clusters in (c).
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K-means, EM and SPC) for sorting accuracy. The sorted 
results are displayed in figure 8. Four datasets (noisy moon 
data, five simulated clusters, three anisotropic Gaussian clus-
ters, pre-recorded real neural spikes from a gerbil) were sub-
mitted to the four algorithms (the above three and EGNG) for 
the comparison. The true positive (tp), the false negative (fn) 
and the false positive (fp) were calculated based on the sorted 
results to obtain the F1-scores for the four sorting algorithms 
for quantitative comparison. The F1-score is defined as [44, 
45]

F1 = 2 ×
Å

precision × recall
precision + recall

ã

where

precision =
tp

tp + fp

recall =
tp

tp + fn
.

The F1-score has a value between 0 and 1 in which 1 indi-
cates a 100% correctness for the sort. The means and the stan-
dard derivations of the F1-scores evaluated from 10 repeated 
runs for the four sorting methods are listed in table  2. The 
results indicate that the EGNG algorithm could sort correctly 

for all the four datasets with high F1-scores, while the other 
four algorithms had problems sorting at least one of the data 
sets. This is largely due to the fact that EGNG algorithm can 
handle closely spaced and non-Gaussian clusters. The conv
ergence time of the EGNG algorithm was also compared to 
the other four clustering algorithms using the five simulated 
clusters dataset on a 16 GB, 3.4 HHz Intel i7 computer. Due to 
the algorithmic simplicity of EGNG, EGNG had the shortest 
convergence time among the five algorithms, as shown in 
table 3. It is also worth mentioning that EGNG was written in 
the Python programming language. Python is an interpreting 
computer language that is notoriously slow in handling for 
and while loops. In contrast, the other algorithms were highly 
optimized with C language in the Scikit-learn library, and 
EGNG may converge faster if properly optimized.

3.7.  Convergence time and clustering accuracy against 
increased EGNG dimensions

The convergence time and clustering accuracy were also evalu-
ated as the dimensions of the EGNG nodes and the neural data 
were increased. The benchmarks were calculated on the same 
i7 computer using the same data set of figure 5(a). As shown 
in table 4, the convergence time was approximately increased 
by a factor of 2 as the EGNG node and data dimensions were 

Figure 7.  EGNG algorithm was used to classify publically available neural data sets. (a) Neural data obtained from the hc-1 and (d) 
from NCHybrid136 data sets were classified separately with off-line EGNG. (b) and (c) Show the temporal waveforms and the waveform 
averages of the two clusters of (a). (e) and (f) Show the temporal waveforms and the waveform averages of the two clusters of (d).
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increased from 2 to 5. In addition, the clustering accuracy was 
unchanged as the dimension was increased.

3.8.  On-line EGNG for real-time streaming neural spike  
classification

The true power of the EGNG algorithm rests on its ability 
to rapidly and adaptively classify streaming neural spikes in 
real-time. Figure 9 shows the process of how EGNG clusters 
were developing through analyzing streaming neural spikes 

in real-time. At the beginning of the clustering, as shown in 
figure 9(a), only a few initial neural points entered the algo-
rithm and a few EGNG nodes were created interconnected as 
one EGNG cluster to cover them. Since the full distribution 
of the neural points has not been learned by the EGNG nodes 
at this early stage, these early neural points were classified to 
belong to a first EGNG cluster. As more neural points were 
streamed into the algorithm, more EGNG nodes were cre-
ated and separated into EGNG clusters covering each of the 
neural clusters better based on the EGNG clustering process. 

Figure 8.  Comparison of sorting accuracy between three commonly used classification algorithms to EGNG. The four sorting algorithms 
are (1) density-based spatial clustering of applications with Noise (DBSCAN), (2) K-means, (3) expectation maximization (EM), (4) super-
paramagnetic clustering (SPC) and (5) EGNG. Four different datasets were used to test the algorithms and they are (a) noisy moon data, (b) 
synthetic five cluster groups with Gaussian distribution, (c) synthetic three cluster groups with anisotropic Gaussian distribution, and (d) 
pre-recorded real neural spikes from a gerbil. The EGNG algorithm can correctly classify all four datasets while the other three algorithms 
had trouble classifying at least one of the data sets.

Table 2.  Means and standard derivation of F1-scores comparing the five sorting algorithms in which EGNG algorithm has the highest F1-
score for the four datasets.

Data 1 (moon data) Data 2 (5-clusters) Data 3 (anisotropic) Data 4 (real data)

DBNSCAN 1.0  ±  0 0.923  ±  3.53  ×  10−8 0.996  ±  3.18  ×  10−8 0.227  ±  5.49  ×  10−9

EM 0.855  ±  1.36  ×  10−6 0.766  ±  2.62  ×  10−8 1.0  ±  0 0.720  ±  2.80  ×  10−5

K-means 0.754  ±  4.88  ×  10−6 0.604  ±  2.34  ×  10−8 0.827  ±  2.73  ×  10−8 0.812  ±  2.12  ×  10−6

SPC 0.986  ±  3.43  ×  10−5 0.985  ±  3.12  ×  10−5 0.493  ±  1.13  ×  10−5 0.8536  ±  1.32  ×  10−5

EGNG 1.0  ±  0 0.987  ±  4.21  ×  10−8 0.998  ±  3.21  ×  10−6 0.974  ±  5.31  ×  10−5
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Incoming neural points were then classified based on the 
EGNG cluster distribution at the time, as shown in figures 9(b) 
to (d). As more and more neural points were streamed into the 
clustering process and analyzed, the full neural distribution 
was then learned by the EGNG nodes, and the EGNG clus-
ters became stable. Subsequently incoming neural points were 
classified correctly, as shown in figures 9(e) and (f). In these 
figures, colors were used to represent the assigned cluster of 
the neural point at the time the point was analyzed. It is noted 
that some early neural points were not correctly classified at 
the beginning of the clustering because the neural distribution 
was not yet fully learned, and the algorithm had to rely on 
only a few neural points to build the full picture of the neural 
distribution, resulting in some early classification errors. As 
more neural points streamed in, the full neural distribution 
was more thoroughly learned by the EGNG clusters and the 
subsequent classification was correct. This learning period 
is brief and only requires the first tens of neural spikes, as 
demonstrated in figure  9. This initial error should not pose 
a significant problem for data analysis in a real-time closed-
loop setting, especially for longer recordings. It is purposely 
to show that the neural points were not reanalyzed to allow 
rapid classification for immediate downstream data analysis.

3.9.  EGNG clusters adapt to neural distribution changes

In addition to the ability to learn the neural distribution rapidly 
in real-time, another major advantage of EGNG is its flexibility 
to adapt to neural distribution changes for continual and correct 
neural clustering, as well as the ability to differentiate actual 
neural spikes from noise. Figure  10(1(a)) shows the EGNG 
algorithm has learned the neural distribution and correctly cov-
ered it with three EGNG clusters. Figure 10(1(b)) shows how 
new neural points were streamed in to the left side of the third 
cluster (yellow) located at the lower part of the figure. These new 
neural points represented a situation as it might occur during 
long-term electrophysiological recordings when the implanted 
electrode moved slightly, resulting in a temporal shape change 
of the neural spikes and a location shift for the neural points 
in the vector space. As more neural points were streamed in 
to the left of the cluster, the EGNG nodes of the cluster were 
shifted towards these new neural points to the left, as displayed 
in figure 10(1(c)). The movements of EGNG clusters allow the 
neural points to be continuously and correctly classified, even 
when the physiological conditions are altered.

Electrode movement can also result in picking up of neural 
spikes from a neuron that was previously too far away from 
the electrode to yield a useful signal. In this situation, EGNG 
can dynamically create new EGNG clusters to add to the 
existing EGNG clusters for correct clustering. Figure 10(2(a)) 
shows three stable EGNG clusters covering the neural distri-
bution. Next, additional neural points were streamed in at a 
location away from the existing clusters (top right), as shown 
in figure 10(2(b)). These remote neural points caused the algo-
rithm to generate new EGNG nodes and move towards them. 
In this manner, a new EGNG cluster was created and neural 
points at the vicinity were classified as belonging to the new 
cluster, as shown in figure 10(2(c)).

Finally, electrode movement might result in the loss of neural 
spikes from a neuron. In this case, the EGNG cluster covering 
these neural spikes should be removed. Figures 10(3(a)–(c)) 
demonstrate this situation by only streaming in neural points 
belonging to two EGNG clusters, leaving the third cluster 
(lower right) without new neural points to strengthen it. As 
a result, the third EGNG cluster without neural spikes was 
removed from the distribution, leaving only the first two 
EGNG clusters to continue for the classification.

EGNG can easily integrate with noise rejection to elimi-
nate accidental noisy spikes from genuine neural spikes. 
Neural spikes from the same neuron tend to cluster close to 
one another, but noisy spikes are scattered all over the place. 
If the Euclidian distance of a point to its nearest EGNG node 
is longer than the noise rejection threshold (dn), the point is 
rejected as noise and is not classified. In figure 10(4(b)), all 
new points are colored in grey; the points closer to a cluster 
are colored with the respective clusters and the points that are 
classified as noise are colored in purple and rejected.

3.10.Hardware implementation of EGNG to sort streaming 
neural data in real-time

A hardware implementation of the EGNG algorithm was 
developed for an FPGA chip to demonstrate the real-time 
spike clustering capability of EGNG. An FPGA develop-
ment broad (Arty A7-35T, Xilinx, CA) containing an FPGA 
chip (xc7a35ticsg324-1L, Xilinx, CA) running on a 20 MHz 
system clock was used for the implementation. The EGNG 
code for the FPGA hardware was written using Verilog, which 
is a hardware description language, and was compiled and 
implemented on the FPGA using the Vivado design suite 
(Xilinx, CA).

Table 3.  Convergence time in seconds comparing EGNG to the 
four other clustering algorithms in classifying data 2 (5-clusters), in 
which EGNG has the shortest convergence time.

Convergence time (s) 
of data 2 (5-clusters)

DBNSCAN 6.013
EM 5.621
K-means 8.351
SPC 6.241
EGNG 5.408

Table 4.  Changes of the convergence time and the clustering 
accuracy off-line as the dimension of the EGNG nodes and the 
neural data were increased from 2 to 5.

EGNG node dimension Convergence time (s)
Clustering 
accuracy

2 10.88 0.971
3 17.6 0.968
4 20.8 0.974
5 23.97 0.973
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Figure 11(a) illustrates the overall design of the EGNG 
hardware implementation. The FPGA design was separated 
into several hardware blocks: (1) 16 interconnected EGNG 
nodes, (2) a sorting network block, (3) an edge update block, 
(4) a connected components block, and (5) a label matcher 
block. As a neural spike was streamed into the FPGA, the 
position of the neural spike in the vector space was sent to 
all EGNG nodes simultaneously, and the Euclidian distances 
between the neural spikes to all the EGNG nodes were calcu-
lated in parallel with a single clock cycle. Based on the cal-
culated Euclidian distances, the sorting network block then 
determined the closest two EGNG nodes (S1 and S2), which 
were then used to update the positions and insert param
eters of all the EGNG nodes (step 2 and 3). If the number of 
iterations had exceeded the value of λ, the sorting step was 
repeated with the insert parameters of the EGNG node, and 
a new EGNG node was inserted (step 4). The edge update 
block then created new EGNG edges and deleted old ones, 
and condensed all the EGNG edges into a single vector repre-
senting a triangular matrix from which connected components 
could be determined (step 5). The edge vector was passed 
into the connected components block, which then determined 
the clusters of EGNG nodes connected by EGNG edges. The 
resulting clusters were sent to the label matcher block that 
compared the most recently identified clusters to the previous 
set of labeled clusters in order to ensure that cluster labels for 
each group of connected EGNG nodes remained consistent. 
Finally, the input neural spike was classified according to the 

EGNG cluster containing the S1 node, and a cluster label was 
assigned to the neural spike at the output.

Figures 11(c)–(h) show snapshots of the EGNG clustering 
with the FPGA hardware using the same artificial data set used 
to generate figure 9 in software clustering as inputs. A movie 
showing the detailed clustering process was also included in 
the supplementary information. The hardware EGNG clus-
tering followed the same evolution as that in the software 
classification to separate and form EGNG clusters, and finally 
resulted in four well-separated EGNG clusters, demonstrating 
the same clustering capability in both hardware and software. 
Figure 11(i) compares the results of the hardware and soft-
ware EGNG clustering and shows identical clustering number 
assignments, except in the early stage of the process when the 
four clusters were not yet formed in the hardware implemen-
tation. A normalized confusion matrix was also constructed 
to demonstrate the clustering agreement between the hard-
ware and software implementation, as shown in figure 11(b). 
Agreement values between 0.96 to 1.00 were obtained, and 
the agreements can further be improved by using more neural 
spikes as the disagreements mainly occurred in the beginning 
of the clustering.

The worse-case clustering latency between the time when 
the neural spike was sent to the FPGA and when the clus-
tering label assignment was determined was 3.10 µs (62 clock 
cycles), allowing a minimum of 322 580 neural spikes to be 
clustered per second. However, several of the FPGA modules 
were not optimized and future improvements can be made to 

Figure 9.  On-line EGNG algorithm to sort streaming neural spikes. (a) At the beginning of the sort, a few neural points were streamed 
into the system and several connected EGNG nodes were created forming a single EGNG cluster. Since only one EGNG cluster was 
formed, all the neural points were classified to the cluster (purple). (b) As more neural points were streamed in, the EGNG nodes broke 
into two clusters and the new incoming neural points will be classified based on the shortest Euclidian distances to the two clusters (cluster 
1—purple, left; cluster 2—green, right). (c) As more neural points came in, the new neural points continued to be classified to the two 
EGNG clusters. (d) The EGNG nodes were further broken into three groups and new incoming neural points were classified into three 
cluster groups (cluster 1—purple, left; cluster 2—green, below; cluster 3—blue, right). (e) The EGNG nodes were broken into four groups 
as the data distribution became more apparent as more data were analyzed. New incoming data were classified into four clusters (cluster 
1—purple, left; cluster 2—green, below; cluster 3—blue, right; cluster 4—cyan, center). (f) The distribution of the neural points were 
completely learned by the algorithm and the EGNG clusters became stable. New incoming neural data were correctly classified by the four 
stable EGNG clusters.
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further reduce the clustering latency and increase the number 
of neural spikes that can be handled by the FPGA hardware.

4.  Discussion

EGNG is a robust spike clustering algorithm that correctly 
classifies both pre-recorded and streamed neural spikes in 
off-line and real-time situations. The advantages of EGNG 
include (1) rapid classification for streamed neural spikes, 
(2) self-adjustment to cluster movements for continual cor-
rect clustering, (3) addition and deletion of new and obsolete 
EGNG clusters as the electrode move closer to or away from 
neurons, (4) no assumption for the clusters to be Gaussian dis-
tributed, (5) no need to retain neural data in system memory, 
(6) automatic determination of the neural cluster number, and 
(7) compatibility with parallel computation using digital elec-
tronic technology.

In order to design a spike clustering algorithm that is suit-
able for long-term neural recordings and for system miniaturi-
zation using digital electronic technology, several guidelines 
were followed during the design. First, EGNG was designed 
to be computationally lightweight. This was accomplished 
through an approach in which the calculations are mostly 
limited to the computation of the Euclidean distance between 
two points and the minimum Euclidean distance between 
two nodes. Second, because the neural distribution is learned 
by EGNG clusters, neural points are not required to be 
retained in the system memory once processed, saving a sig-
nificant amount of system resources. Finally, EGNG clusters 
were designed to be highly adaptive to neural distributional 
changes, which is important for long-term recordings during 
which electrode movements are difficult to avoid.

The EGNG algorithm performs very well when classifying 
pre-recorded neural spikes, even though the true strength 
and usefulness of EGNG are in classifying streaming neural 

Figure 10.  The EGNG algorithm is highly adaptive to changes in neural distribution. (1(a)–(c)) Moving one of the EGNG clusters: Three 
stable EGNG clusters were initially established and new neural points were added to the left side of the cluster in below; (c) the EGNG 
nodes were moved to the left to adapt to the movement of the cluster. (2(a)–(c)) Addition of a new EGNG cluster: new neural points (grey) 
were added to the upper left side to simulate a new neuron being recorded and a new EGNG cluster was created to correctly classify 
the new neural spikes. (3(a)–(c)) Deletion of obsolete clusters: no neural points near the EGNG cluster were input into the algorithm to 
simulate neural spikes from a neuron which can no longer be picked up by the electrode, and the EGNG cluster was then removed from 
the distribution. (4(a)–(c)) The points located near to a cluster are colored with the respective clusters and the points colored in purple, 
were classified as noise and rejected. Note: grey points represent new neural points entering the algorithm and purple points were incoming 
neural points classified as noise due to their far distance to any of the EGNG clusters.

J. Neural Eng. 16 (2019) 056007



Z Mohammadi et al

16

spikes in real-time. The algorithm does not require the neural 
clusters to be Gaussian distributed, which allows classifying 
neural spikes contaminated with non-traditional noises. The 
algorithm does this by conforming and self-connecting the 
EGNG nodes into various shapes to best cover the neural 
distribution. This capability is generally lacking from other 

spike clustering algorithms, including EM, K-mean, SPC and 
DBSCAN.

Another advantage of the EGNG algorithm that is dif-
ferent from those of the current generation of spike clus-
tering algorithms is its ability to adapt to real-time changes 
of the neural distribution. If the clustering is not adapted as 

Figure 11.  EGNG implementation on an FPGA to demonstrate hardware real-time neural spike classification capability. (a) Schematic 
diagram of the FPGA implementation with 16 EGNG nodes simultaneously computing the Euclidian distances between the input neural 
spike data (IN) and each of the EGNG nodes. A sorting network was built to determine S1 and S2 nodes. An edge update block was built 
to update EGNG edges creation and pruning, and a connected components block was built to find clusters of connected EGNG nodes. A 
label matcher block was used to maintain consistency between clusters and cluster labels. Finally, the neural spike data was classified for 
the output; (b) normalized confusion matrix comparing the classification results between the software and hardware EGNG. (c)–(h) Real-
time neural spike classification using the FPGA hardware with the same input data of figure 9. The evaluation of the EGNG nodes closely 
followed that of figure 9. (i) Semi-raster plot comparing the classification between the software and hardware implementations.
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the electrode drifts away from its initial position, the classi-
fication may become unstable, leading to decoding problems 
downstream. EGNG may help maintain the classification for 
a longer period of time as the algorithm continues to follow 
the changes in the neural distribution. In contrast, the cur
rent generation of neural decoding routines are based on an 
unchanging neural distribution and will require new develop-
ments in order to take advantage of the dynamic sensing of 
new and obsolete clusters. In a boarder sense, EGNG can be 
considered as a template matching technique that uses EGNG 
nodes and edges to build the templates (EGNG clusters) in 
the vector space, and that has built-in capability to adapt to 
changes of the neural distribution.

It is recognized that some of the early neural spikes were 
not classified correctly in the real-time mode. This is due to 
the fact that the algorithm learns from the data as it comes in, 
and does not have enough information to deduce the full pic-
ture of the entire neural distribution during the initial phase 
of a real time clustering process. This situation, however, sig-
nificantly improves as more neural spikes are streamed in. 
The algorithm continuously updates itself to better match 
the full neural distribution, making the classifications for 
latter incoming spikes more accurate. This process can be 
understood as a Bayesian learning process in which the 
EGNG clusters are continuously updated with new informa-
tion of the incoming neural spikes. Through this process, an 
increasingly better inference of the neural distribution can 
be estimated, yielding to increasingly better classification 
predictions. This adaptability is manifested by allowing the 
algorithm to move, add and delete EGNG clusters to better 
match the neural distribution as the electrophysiological con-
dition changes.

The EGNG algorithm is designed to take advantage of the 
computational parallelism in modern digital electronics for 
rapid spike clustering. As demonstrated in our FPGA imple-
mentation, 16 EGNG nodes were implemented and each node 
was an individual calculator computing the Euclidian distance 
between the EGNG node and the input neural point. Although 
our current implementation only has 16 EGNG nodes, it is 
relatively simple to replicate the basic building block of an 
EGNG node to create more nodes and retain the parallel 
computation structure. Additional acceleration was achieved 
through use of parallel comparators to determine the EGNG 
nodes with the shortest and the second shortest Euclidian dis-
tances. Even with the additional hardware modules to manage 
the EGNG node and edge updates, the entire classification 
took less than 62 clock cycles, and the classification latency 
for our current system was less than a hundred microseconds, 
allowing rapid signal analysis downstream for closed-loop 
neural control.

We have previously developed an analog integrated cir-
cuit (IC) combining a high-sensitive neural amplifier with an 
adjustable optical light source driver with a physical dimen-
sion of 2  ×  3 mm2 [21]. Using this IC, we have demonstrated 
experimentally that action potentials from an anesthetized 
gerbil can be measured and at the same time optogenetically 

inhibited. We plan to also integrate the EGNG algorithm onto 
this IC. The goal is to develop a miniaturized and low-power 
mixed signal IC that can perform neural recording, neural data 
analysis, and optogenetic stimulation/inhibition without the 
need of a desktop computer in the near future.

The EGNG algorithm was only discussed and demon-
strated to classify neural spikes recorded from a single elec-
trode at this point. This does not, however, imply that the 
algorithm can only be used to classify neural spikes recorded 
from a single source. The algorithm can be extended for use 
with for multiple electrodes by simply adding an additional 
dimension in the vector space to represent the recording site 
number. In this manner, neural points recorded from different 
electrodes are presented in their respective planes, and EGNG 
nodes and edges can be extended for the additional dimen-
sion to classify the neural spikes accordingly. This extension 
is particularly applicable for electrodes with a small number 
of recording sites, such as in tetrode recording. For electrodes 
with high density of recording sites, additional development 
of the algorithm is needed to avoid a significant increase in 
hardware resources which would prevent system miniaturiza-
tion. We are currently working on refining the algorithm and 
hardware implementation techniques to better handle higher 
electrode density recording.
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Supplements

A supplementary document can be downloaded including 
the pseudo-codes for both on-line and real-time EGNG algo-
rithms, additional evaluation of the algorithm using split data 
set, selection of parameter values and performance evaluation 
against increased EGNG node number and dimension.

Three movies were included in the supplementary informa-
tion. The first two movies demonstrate the EGNG algorithm 
in off-line and real-time modes. The first video is the movie 
version of figure  1 showing the generation, movement and 
deletion of EGNG nodes and edges to cover the pre-recorded 
neural distribution and classify the neural points according to 
the EGNG clusters. The second video is the movie version of 
figure 9 demonstrating how the EGNG algorithm adapts and 
classifies neural spikes as the neural spikes were streaming in 
to the algorithm in real-time. The third video is the extended 
movie version of figure  11, demonstrating real-time EGNG 
clustering with the FPGA hardware.
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