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Abstract— A 10-bit 500-MS/s partial-interleaving pipelined
successive approximation register (SAR) analog-to-digital con-
verter (ADC) architecture is presented that implements a full-
speed 2-bit/cycle SAR at the front end with interleaved residue
MDACs and SAR ADCs at the back end. This architecture
achieves high speed, while preventing the interleaving spurs.
In addition, the design considerations and calibration techniques
for gain and offset are also introduced. A histogram stage
gain error (HSGE) calibration is implemented to correct the
conversion nonlinearities in the digital domain. Measurement
results on a 65-nm CMOS prototype show an signal-to-noise
distortion ratio (SNDR) of 55.9 dB at dc input and a figure of
merit (FoM) of 32 fJ/conversion step at 1.2 V supply.

Index Terms— Offset calibration, partial interleaving (PI),
pipelined-SAR, stage-gain error calibration.

I. INTRODUCTION

ATTERY-POWERED mobile applications strongly call

for low-power and high-speed ADCs. For moderate res-
olution (>9 bit), SAR and pipelined SAR [1]-[7] ADCs
can achieve low power but not high speed. Among the
reported designs, SAR-type ADCs employing a single channel
face a limited speed (<300 MS/s) [1]-[4]. Even utilizing
a two-way interleaved scheme, such as [S]-[7], their speed
may not be as high as some signal channel pipelined
ADCs [8], [9]. Indeed, incorporating larger number of inter-
leaving channels can further extend the speed of SAR-type
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ADCs [10], [11] but their power efficiency are not good,
due to the implementation of power hungry track and
holds (T/Hs) or precise clock distribution paths. For instance,
if a 10-bit TI SAR ADC is designed to achieve a conversion
rate of 500 MS/s, where the ADC is built with five time-
interleaved channels, it is necessary to suppress lo of timing
mismatch at 280 fs. In general, designing the clock skew
at hundreds of femtoseconds is challenging and the time
calibrations [11]-[13] are necessary to suppress time spurs
implying extra digital overhead. Therefore, in order to achieve
both high resolution and high speed without utilizing time
calibration, one of the main design challenges would come
from the sampling front end.

A partial-interleaving (PI) pipelined-SAR architecture [14]
was proposed that implements a high-speed 2-bit/cycle SAR
ADC for the front-end sampling and conversion, where the
residue multiplying digital-to-analog converter (MDAC) and
the second-stage ADC are interleaved at the back end. The
architecture eliminates the sampling mismatches from the
interleaving scheme that also significantly save the power
budget for clock generation as well as additional time cali-
bration. This paper analyzes some conversion nonidealities in
the PI pipelined-SAR architecture including mismatches from
offset and gain, the back-end interleaving switches and the
stage-gain error. The on-chip offset-cancellation technique [7]
is optimized to compensate offsets from both Op-Amp and
comparator. In addition, the stage-gain error is estimated and
corrected in the digital domain by a proposed histogram stage
gain error (HSGE) calibration.

II. ADC ARCHITECTURE

Fig. 1 shows the ADC architecture and its timing
diagram. The first stage contains a high-speed 6-bit, 2-bit/cycle
SAR ADC and ping-pong residue MDACs (MDAC;,; and
MDAC; ). The use of interpolation can reduce the number of
required capacitive DACs for 2-bit/cycle operation from origi-
nal 3 to 2; therefore, two differential DACs (DAC; and DAC;)
are used for the front-end sampling and conversion. Only
the DAC is shared by the TI-MDACs. As the DAC; is not
involved in amplification, for conversion matching it contains
a dummy array, whose total capacitance is the same as
MDAC [14]. The second stage consists of two-way TI-SAR
ADC to determine the fine 5-bit output. Each SAR is built

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ZHU et al.: 10-bit 500-MS/s PI PIPELINED SAR ADC

10
| DIGITAL ERROR CORRECTION LOGIC |-‘r>

Iy
" Shared SAR ADC }6 1+.Stage

500MHz
o—

2bl/cycle SAR CNTL

[ 'saroNTL
g1} CN1 b2 9, <1:6> 5
:\;" MDAC: 5 :,\;:_ :F: 6b DAC ;

. __‘ Iy +Vref Mux|

b2
ff’ MDACMIﬁ:_ 'j: 6b DAC:2
5
Ch.2 <1:6>
[ sAR CNTL

N

<1:6>

6b DAC I:‘

- :
fs=250MS/ |
fs=500MS/s —>i |

91 | [ \/ 01
qij‘;a!/sms\/sm Conv. (2blcycle) ! /5/H4s\/SAR Conv. (Zb/cycl_e)\:/sTtiJs\/SAR Conv. (2b/cycle)
ona. 1//(Ch.1) SAR Conv.(1b/cycle) NI/~ Residue Amplification I/ SAR Conv.(1blcycle)
Stage SAR Conv.(1b/cycle) \|I/

(Ch.2) Residue Amplification Residue Amplification

Fig. 1. ADC architecture and timing diagram.
with a 6-bit split-DAC, a comparator, and SAR control logic,
where an extra bit is implemented for offset cancellation [7].
Two stages have 1-bit overlapping for digital error correction,
which relaxes the conversion accuracy of the first stage to 7 bit.

During the sampling phase (¢; = ¢; = 1), the input
signal Vi, is sampled onto the DAC, DAC;, and MDAC;
simultaneously. In the conversion phase (¢;1 = 1), the
first stage resolves the coarse 6 bit in three conversion
cycles (1.2 ns). When the conversion is completed (¢ = 1),
the MDAC] ; disconnects from the DAC; and employs to the
input of the Op-Amp. The residue generated at the top plate
of MDAC],; is amplified and then sampled by DAC; ; in the
second-satge SAR. Meanwhile, the first-stage DAC; switched
to MDAC;  starts an incoming sampling. When the fine 5 bit
are determined in the second stage, they pass to digital error
correction logic for the final 10-bit outputs. The front-end SAR
ADC operates at 500 MS/s, while each interleaved channel
works at 250 MS/s with an equivalent duration of 2 ns to
perform the amplification and conversion, respectively.

This design implements a stage gain of 4 [3] instead of
8 or 16 [4]-[7]. The lower stage gain reduces the output
swing of the amplifier and increases the closed-loop band-
width that is appropriate for high-speed designs. With a flip-
around operation [7], the required open-loop gain is =42 dB.
Moreover, as the amplification period is 2 ns, assuming the
slew rate occupies 20%, the required gain bandwidth (GBW)
is =21.38 GHz. The op-amp implemented as a telescopic
with gain-boosting topology [7] achieves 1.7-GHz bandwidth
and 69-dB dc gain, which is sufficient to suppress the
Op-Amp’s finite gain error as well as the memory effect.

III. CIRCUIT TECHNIQUES AND IMPLEMENTATION

The proposed PI pipelined-SAR ADC architecture inter-
leaves the residue amplification instead of sampling network
that reduces the timing and bandwidth mismatches for high-
frequency input, as the signal amplified to the TI channel is the
residue after 6-bit quantization that would be static. However,
the back-end TI channels still suffer the mismatches from gain
and offset. In addition, the signal feedthrough via the TI switch
affects the amplification accuracy. This section discusses the
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design nonidealities due to signal coupling from the TI switch
as well as the mismatches from offset, gain, and reference
voltages. The corresponding calibration and circuit techniques
are also introduced.

A. First-Stage SAR ADC

The implementation of the first stage SAR ADCs is shown
in Fig. 2. It consists of a 6-bit DAC;, ping-pong residue
MDACs, an SA controller (CNT), and offset calibration
logic (CAL LOG). The input signal is precharged at the top
plate of the entire array. During bit cycling, the MDAC,
involved in the SA conversion is grounded, which scales down
the reference voltages by 2 [4], [7]; therefore, two reference
voltages & Vier match with the full-scale rail Vrs (1.2 V,_p).
Meanwhile the other MDAC » performing the flip-around x4
amplification feeds back 16 units of total 64C to the output
of the Op-Amp. The TI switches Sg; and Ss> implemented in
series with the sampling switch Ssg at the top plate increases
the RC time constant required for each bit settling, while
the settling accuracy is relaxed to #1/2% Vs due to 1-bit
digital error correction. The 6-bit DAC is segmented to unit
element per 2 bit instead of binary array to improve the
conversion linearity and avoid the complex decode logic in
SAR controller. The desired unit capacitor matching (A C/C)
is 0.8%. A custom-designed unit capacitance of 5.5 fF is
formed with fringe structures (2 um x 2.4 um) using the
metal layers (first to fifth). The 6-bit DAC and each MDAC
contain the same total units of 64C (352 fF). The total input
capacitance is 1.4 pF (single ended, excluding PAD, and
ESD device), half of which is from DAC; in Fig. 1. The
synchronous SAR control logic is designed with a bit cycle
of 400 ps.

Moreover, one benefit of the PI architecture is the high
immunity to the reference noise during the amplification, since
the 48 units in TI-MDACs are connected to common-mode
voltage Vcm instead of the reference voltages, which provides
a differential cancellation of the common-mode variations.
The reference noise due to switching transition is critical,
especially in the TI-scheme, where the multiple channels
are sharing the same reference source and performing the
SA conversion simultaneously, the conversion in each channel
interferes with each other through the reference voltages, and
finally leading to signal-dependent errors [15].

B. Optimized Offset-Cancellation Technique

In this design, the offset mismatch is contributed from
three comparators in the first stage to perform 2-bit/cycles
operation, the Op-Amp and two comparators in the second
stage. Since the first-stage SAR and the Op-Amp are shared
by two channels and the use of digital error correction relaxes
the total input referred offset requirement to =41/27 Vgg,
i.e., 18.75 mV,_,. When its value exceeds the requirements,
large conversion distortion occurs because the residue saturates
the full scale of the second stage. Therefore, the offset voltage
of three comparators needs to be suppressed within desired
level. Assuming that the offset-mismatch components dopp are
Gaussian random variables with a standard deviation of oom,
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Fig. 2. First-stage SAR ADC and offset calibration timing diagram of two stages.

the SNDR considering the offset mismatch can be calculated
as [16]

Amp, 1
SNDR ~ 20 log (%) — 10log, (1 - M) 1)
OOM

where Amp;, is the amplitude of the input signal, and
M (>1) is the number of TI channels. Since 2 bit/cycle
is determined by three comparators, it can be equivalent
to the operation in the three TI channels. Considering that
the limited SNDR of a 6-bit ADC is 38 dB, the expected
SNDR from offset mismatch needs to be designed higher than
this level. To achieve 42-dB SNDR with Amp;i, of 1.2 V
and M of 3, the oom—1st of offset mismatch in the first stage
should be <8.2 mV. The offset mismatches in the second-
stage comparisons cause spurs. As this design targets 10-bit
resolution (SNDR = 62 dB), also 4-dB design margin is left
for offset mismatch. According to (1) and stage gain of 4,
the oom—2nd of input referred offset mismatch from the second
stage should be suppressed less than 2.4 mV.

The offsets coming from the comparators as well as
the Op-Amp are all calibrated on-chip. Fig. 2 shows the
timing sequences of the offset calibrations. The compara-
tor used in the first-stage SAR ADC is dynamic compara-
tors [17] with PMOS input. When the calibration is activated
(Cal.Start = 1 and ¢cq = 1), the DAC; will disconnect
from the MDACs and reset to the common mode for the
offset calibration in the first stage. As the calibration accuracy
is relatively relaxed comparing with the second stage, the
offsets can be compensated simply by adjusting the differential
currents with extra calibration input pair [18]. Once the offset
calibration in the first stage is completed, it will output
a Done signal to enable the calibration for the second-stage
SAR ADCs. In our previous design [7], the offset-cancellation
technique compensates only the offset from the comparator in
the second stage. The offset in the Op-Amp, which will be
amplified by the stage gain, is tolerated by sizing up the input
pairs. It increases the Op-Amp’s input parasitic and degrades
its noise performance. Therefore, in this design, the offset-
cancellation technique is optimized to cover both offsets from
the Op-Amp and the comparators in the second stage to
improve the robustness of the design. As shown in Fig. 2,
the first-stage SAR needs to reset during ¢ca, before the
normal sampling ¢g is enabled. Then, the first-stage SAR
ADC performs the 6-bit conversion and generates a residue
on MDAC] ;. The residue together with the offset from the
Op-Amp is amplified by 4 to the second-stage DAC. Similar

to [7], the total offset, including the signal sampled from the
first stage and the comparator’s offset in the second stage,
will be converted into 6-bit offset codes and stored in the
CAL LOG. Since this action repeats twice, the offset can be
measured in sequence and stored in the second stage. Once
the calibration is completed, the ADC will be resumed to its
normal operation.

C. Time-Interleaved Switches

While the PI operation avoids the timing mismatch,
the TI switches Sgq; and Sg» introduce the other nonidealities
including sampling distortions from varying on-resistance,
charge-injection, and signal feedthrough. According to the
PI operation of the TI switches, (Ss1/Ss2) needs to be kept
on during both sampling and conversion phases. Therefore,
Ss1/Ss> cannot be bootstrapped to the input signal and the
transmission gate switch is used, whose on-resistance varies
from 27 to 42 Q with W/L of an NMOS = 15/0.06 um
and a PMOS = 30/0.06 gm under a 1.2 V,_, input.
Thus, it limits the sampling total-harmonic-distortion (THD)
to —76 dB.

The TI-switch also imposes the signal-dependent charge-
injection AVcy. Fortunately, the charge-injection error is
not significant, as the switches are turned off at the
end of conversion, where the residue is comparatively
small (<18.75 mV,_,). To guarantee 10-bit accuracy,
AVcy should be suppressed less than 563 uV,_,. Assuming
half of the charge is injected to the MDAC, the junction
capacitance of the switch is required to be <6% of the total
capacitance from MDAC, which is not more than 22.5 fF.

Except the nonlinear junction capacitor, the drain—source
parasitics from the TI-switch cause the signal feedthrough,
which disturbs the residue amplification. As shown in Fig. 3,
while the MDAC, > is amplifying the residue to the DAC
in the second stage, the 6-bit DAC of the SAR connecting
with MDAC; | is performing the successive approximation.
The signal coupling via parasitics of Ss2,, and Ss2, to the
Op-Amp’s virtual ground causes oscillation, which affects the
settling time and accuracy of the amplification. Therefore,
the signal feedthrough compensation is required. In Fig. 3,
the cross-coupled technique is utilized at the top plate of
TI MDACs to provide signal cancellation from Vi ,/Vi,
to V2,,/V2,p. The dummy compensation capacitor is imple-
mented with MOS capacitor, which has the same size of the
TI switches for better matching.
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Though the timing mismatch is avoided through architecture
optimization, there still exists bandwidth mismatch between
the ping-pong residual sampler, which comes from the mis-
match of the sampling capacitor and the resistance of the sam-
pling switch. The capacitor matching can achieve o (Cy)/C;
better than 0.1%, where C; is the sampling capacitor. Its mis-
match can be ignored. The switch resistance mismatch usually
dominates. The matching requirement can be quite stringent,
if the channel bandwidth is limited. Typically, the sampling
bandwidth will be designed sufficiently large to reduce the
sensitivity to the bandwidth mismatch. This design achieves
a sufficient bandwidth of 8 GHz. In addition, according to
Monte Carlo simulations it shows ¢(BW)/BW of 1% that
fulfills the design target. According to measurement results,
the spur due to bandwidth/skew mismatch is below —73 dB
at Nyquist input.

D. Second-Stage SAR ADC

The first stage resolves 6 bit and its reference voltage
is £1/2 Vgg. With the stage gain of 4 and 1-bit overlapping,
the reference voltages for the second-stage SAR ADC are
+1/16 VEs that is obtained by using a 6-bit split-DAC to scale
down the reference voltages by 16 [7]. As shown in Fig. 4,
the expected output equivalent capacitance Ceq is 2C ideally.
With the 30 units kept grounded, +Vi¢s is attenuated by 16.
This approach saves additional reference generation as well as
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the power consumption, and also reduces the loading of the
Op-Amp for better slew rate. On the other hand, since this
design uses top-plate sampling, the mismatch of Cy and the
top-plate parasitics cause a reference mismatch between two
stages, which is discussed in Section III-E. The capacitance
of C and Cyy is implemented as 5.5 and 12 fF, respectively,
which draws the total equivalent output capacitance to 176 fF.
An asynchronous logic [19] used in the SAR controller
achieves less than 330 ps for each bit cycling. The ADC
determines 1 more bit only during the offset cancellation to
attain the calibration accuracy.

E. Histogram-Based Reference Mismatch Calibration

Gain mismatch is originated by the mismatch in channel’s
dc gain, which is derived from the capacitor mismatches as
well as finite Op-Amp gain error among the channels. Since
the first-stage SAR and Op-Amp are shared, the gain mismatch
between two channels is contributed from the TI-MDAC and
the second-stage DACs, which can be represented as

_ 2 2 2
OGM-Sum = \/ o&m-MpAC T TGm-2na/ G @)

where the opmG_sum 1S the total input referred gain mismatches.
The ogm—Mpac and ogMm-—2nd represent the gain mismatch
between MDACs and the second-stage DACs, respectively.
The SNDR due to the channel gain mismatches can be derived
as [16]

1 1
SNDR = 20log (7) — 10logy, (1 - —). 3)
OGM—Sum M

According to (3) with target SNDR of 66 dB and M of 2,
the omG—_sum Of total input referred gain mismatches should
be <0.07%. Therefore, it requires that the gain mismatches
oGM—_MDAC 18 <0.05% and the oGM—2nd 1S <0.2%. The chan-
nel gain mismatch decided by the inhered capacitor match-
ing is optimized by symmetrical layout routing. Eventually,
the gain mismatch is not the main design limitation while the
reference mismatch between two stages dominates.

Ideally, in an n-bit pipelined-SAR ADC implemented with
a stage gain of G and 1-bit overlapping, the ratio between
two reference voltages Vier; and Vierp in the first and second
stages, respectively, can be represented as

Vrefl _ 21’71
Vref2 G

where i is the number of bit in the first stage. Since the
signals are sampled at the top plate of the DACs in both
first and second stages, the parasitic capacitance Cpj and Cp;
(shown in Fig. 5) cause a ratio mismatch between
two reference voltages, which can be derived as

22=i=12IC + Cpy)
GQiC + Cp1)

where j is the number of bit in the second stage. The ratio
error appears as the same transfer characteristic of the stage-
gain error at the ADC’s output. Fig. 5 shows a 5-bit example
where the first and second stages are both built with a 3-bit
SAR ADC and the stage gain is set as 4 with 1 bit overlapping.

“)

Qid =

5)

Oerr =
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According to (4), ideally, if two reference voltages match with
each other, o should be 1 and the output of the ADC is
linear. Once there is a large mismatch, systematic nonlinear
errors appear at the output of the ADC. The transfer curves
and the code histograms of the digital output are shown
in Fig. 6, respectively. The digital outputs are nonmonotonic,
which result in the corresponding positive differential non-
linearity (DNL) appeared in the code histogram in Fig. 6(b).
Indeed, the nonlinearities can be compensated in the digital
domain as

Dout,cal[Bn+l cee

i J
Bl=fix|p > 2"* 2B, ;+> 2" !B,
n=1 n=1

(6)

where B, equal to 1 or O represents the digital output.
[By+1 ... B1] is the full output code before the digital error
correction. By multiplying a gain factor £ to i bit in the first
stage, the nonlinear errors can be corrected correspondingly.
The calibration concept is similar as [20], but the design
consideration is different. Fig. 7 shows the calibrated outputs.
However, the gain factor f cannot be easily estimated via the
code histogram statistic, once a is larger than 1. Since the
output transfer curve of the ADC fails to be monotonic,
the code distribution under different value of a cannot be
differentiated from each other. Observing the example from
Fig. 6(b), the code histograms of o = 1.7 and a = 1.3 look
similar, which contained periodic positive DNL of ~1.2 LSB,
while the expected compensation values of f are different in
these two cases, as shown in Fig. 7(b).

In contrast, if a < 1, the output characteristic is monotonic,
and a corresponding gain factor f can be easily estimated
via code histogram statistic. In Fig. 8, the smaller a leads
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to negative DNLs or missing codes. The nonlinearities are
periodic and have a static interval of 2/~!. The nonlinearities
can be corrected in the digital domain through multiplying
a gain factor S to j-bit outputs of the second stage

Dout,cal[Bn+l ce Bl]
i
22n+1 2Bn+] + ﬂ Z 21171B /ﬁ (7)

n=1

= fix

The gain factor § can be derived as

2/-1
2/=1 — [Hiserr(m) + - - -
[His(m) + His(m + 1) - -

B =

HiSAV

+ Hiserr (m + 2/-1)]

-+ His(m + 2771172/ 7!
(3)

where His(m) is the code count of each output, Hisay is the

average count of total m outputs Doy, and Hiser () is the
output code containing negative DNLs, which is defined as

if His(m) > Hisay
Hise;(m) = 0
if His(m) < Hisay & His(m) # 0
Hiser(m) = His(m)/Hisay
if His(m) =0
Hiserr(m) = 1. )

The statistical range is 2/~! codes and starts from the middle
code m = 2"~! as for a sine wave input, the digital outputs



ZHU et al.: 10-bit 500-MS/s PI PIPELINED SAR ADC

——a=0.7,p=1.35
20H{——a=05,p=2

10} o= 0.5, p=2

il
N L 5 10 15
0 Vesl2 Ves

Analog Signal Input Digital output
(a) (b)

100

60
20 II

Code Count

Fig. 9. (a) Calibrated transfer characteristic of 5-bit pipelined SAR with
respect to oo = 0.3 and o = 0.7. (b) Corresponding output code histogram of
two cases with a sine wave input.

Gain factor 8
2 1.87 1.6 1.411.33 1.331.24 1.14 1.081.03 1
T T T T T T T T T T

85

75

—o— SFDRw/ Cal.
65 —&— SFDR w/o Cal.

(dB)

55

—5— SNDR wi Cal.

—E— SNDR w/o Cal.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Reference mismatch factor a

45

Fig. 10. Reference mismatch factor a versus the dynamic performance of
a 5-bit pipelined-SAR ADC without and with HSGE calibration.

are more equally distributed in the middle than those at the
two sides. In Fig. 8(b) with a = 0.7, 2J-1 equals to 4;
therefore, f is estimated from His (16) to His (19). As the
Hisay is 21, Hiserr (17) and Hiser (18) are 0.52. The gain
factor S calculated according to (8) is 1.35. Similarly, with
o = 0.5, Hiser (17) and Hiserr (18) are 1. f of 2 can be
estimated according to (8) and (9). Fig. 9 shows the calibrated
output characteristic. The proposed HSGE calibration involves
no feedback to the analog circuitry that simplifies the circuit
implementation.

To verify, the HSGE calibration behavioral simulations were
performed, which modeled the conversion nonlinearities due
to the reference mismatch in a 10-bit pipelined-SAR ADC.
A two-stage structure was built with the 6- and 5-bit SAR
ADCs with one bit overlapping for digital error correction. The
values of the unit capacitors are Gaussian random variables
with a standard deviation of ¢ (AC/C = 0.1%). Fig. 10 shows
the dynamic performance of 100 times Monte Carlo results
before and after calibration. The ratio « is set less than 1, and
a corresponding gain factor £ can be estimated by the calibra-
tion algorithm to compensate the nonlinearities. Both SNDR
and spurious-free dynamic range (SFDR) are significantly
improved after calibration. Fig. 11 shows the output spectrum
before and after calibration with o = 0.85. The reference
mismatch gives rise to the odd harmonics and spurs that limits
the SNDR and SFDR to 53.5 and 70.1 dB, respectively. After
calibration, the spurs are removed and the odd harmonics
are suppressed to lower than —81 dBFS, thus improving the
SNDR and SFDR by 6.4 and 9.1 dB, respectively.
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Dynamic Measurements from 32768 data points

SNR = 53.6 dB, SNDR = 53.5 dB,
SFDR =74.1 dB, THD = -70.1 dB

3rd g

Power (dB)

0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency (fi, / fs)

(a)

g SNR =60 dB, SNDR = 59.9 dB
§_100 SFDR =83.2 dB, THD =-81.7 dB
o
o
0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency (fi, / fs)
Fig. 11.  FFT of the digital output (¢« = 0.85). (a) Before calibration.

(b) After calibration.

Fig. 12. Die chip photograph.

p

= N W h O

Number of Chi

$55 53 53.5 54 545 55 55.5 56
SNDR(dB)@fi,=1.5MHz,f.=500MS/S

Measured performances of a total of 20 chips without and with

Fig. 13.
calibration.

Conventionally, the least mean square (LMS) method
requires an accurate reference channel [20] and an adaptive
filter updating at the background [21]. It has large hardware
overhead and long time for convergence. Since the nonlinearity
corrected here is mainly caused by the parasitics due to the
use of the top-plate sampling rather than the finite Op-Amp
gain error. It contains a periodic pattern in DNL that can be
easily detected statistically. The proposed histogram method
just collects the data within a code interval for gain estimation,
which causes less hardware overhead. The digital gate count
of the calibration algorithm is around 1 K and the estimated
place and route area equal to 0.002 mm? with the power
consumption of 800 W at 500 MHz.

IV. MEASUREMENT RESULTS

A 10-bit 500-MS/s PI pipelined-SAR ADC was fabricated
in a IP7M 65-nm CMOS process with low-VT option and
metal-oxide—metal (MOM) capacitors. Fig. 12 shows the die
photograph of the design; the active area is 0.046 mm?
(330 um x 140 pm). The total power consumption is 8.2 mW
at 1.2 V supply. The analog power consumption is 4.5 mW,
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Measurements from 491520 Data Points
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Fig. 14. Measured static performances without calibrations.
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Fig. 15. Measured static performances with offset calibration.

including T/H, DAC, comparators and Op-Amp, and the digital
power consumption, including clock generator, SAR logic,
and offset calibration, is 3.7 mW. The offset calibration is
implemented on-chip, and the reference mismatch between the
two stages is postprocessed according to the HSGE calibration
algorithm. The calibration is controlled by MATLAB running
on a PC, but the controller could be easily described in VHSIC
hardware description language (VHDL). According to simula-
tion results, excluding the nonidealities due to the mismatches
from capacitors, reference, offset and gain, the thermal noise
in the Op-Amp limits the SNDR to 56.5 dB. Fig. 13 shows the
measured performance of the total available 20 chips at 1.2-
MHz input and 500-MS/s sampling rate. The achieved average

After Offset & HSGE Calibrations
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n
=
> 0
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200 400 600 800
Digital Code

Fig. 16. Measured static performances with offset and HSGE calibrations.

Dynamic Measurements from 32768 Data Points
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Fig. 17. Measured FFT of the digital output at dc input (decimated by 25).

(a) With offset calibration and without HSGE calibration. (b) With offset and
HSGE calibrations.
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Fig. 18. Measured FFT of the digital output at Nyquist input (decimated

by 25).

SNDRs before and after calibration are 53.6 and 55.4 dB,
respectively, which matches the target specifications.

The measured static performances with and without offset
and HSGE calibrations are shown in Figs. 14-16. Before
offset calibration, the digital output contains large DNL and
integral-nonlinearity (INL) >20 LSB, as the second-stage
SAR operation is fully saturated by the offsets from the first
stage and the Op-Amp. Once the offset calibration is active,
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Fig. 19. Measured dynamic performance without and with HSGE calibration.

TABLE I
COMPARISON WITH STATE-OF-THE-ART ADCs

[22] [23] [24] w'so‘;fv:;k This Work
ISSCC” 13|ISSC’ 14| VLSI" 13 | yseE cal. | W/ Offs: Cal.
Architecture T-sAR | T-5AR | Pipeline Pig‘;\";e' Pigi{i’ge'
Technology (nm) 45 65 65 65 65
Resolution (bit) 10 10 10 10 10
Sampling Rate (MS/s)| 900 1000 800 500 500
Supply Voltage (V) 1.2 1.2 1.2 1.2 1.2
Input Swing (Vp.p) N/A N/A N/A 1.2 1.2
SNDR(dB) 53.7 53 55 55.9 52.8
Power (mW) 10.8 18.9 19 8.2 8.2
FoM (fJ/conv.-step) 30 51.8 52 32 46
Area (mm?) 0.038 0.78 0.18 0.046 0.046
Offset Calibration N/A Off-chip Off-chip On-chip On-chip
Gﬂ;{f’:ﬁgi’:\” wio | oftchip | offchip | Off-chip e

the /DNL/ and /INL/ are compensated within 0.6 and 1.7 LSB,
respectively. Since the DAC in the first stage is segmented to
unit element per 2 bit, the worst INL usually happening at
the MSB transition is suppressed. According to the analysis
in Section V, the reference mismatch causes linearity errors,
which are expected to occur in an interval with approximating
16 codes. The error is clearly demonstrated in the DNL plot,
where the negative DNLs happen periodically. The INL plot
exhibits a systematic sawtooth pattern. The DNL and INL after
the HSGE calibration are shown in Fig. 16 and the systematic
errors in DNL and INL are both suppressed within 0.5 and
0.7 LSB, respectively.

Fig. 17 shows the measured fast Fourier transform (FFT)
at 670-kHz input frequency, where Fig. 17(b) reports the
peak SNDR after the offset and HSGE calibrations. The
stage gain error causes a brunch of spurs spreading among
the whole spectrum that degrades the SNR and the SFDR
to 52.9 and 68.2 dB, respectively. Once the calibration is
active, the spurs are suppressed. The third harmonic limits
the SFDR to 76.4 dB. Therefore, the SNDR and the SFDR
are both improved by 3.1 and 8.2 dB, respectively. The third
and fifth harmonics are increased after calibration, which is
potentially caused by the finite calibration accuracy, as the
final digital code is rounded to 10 bit. Fig. 18 shows the
measured FFT at near Nyquist input. The SNDR drops by 3 dB
and the SFDR is dominated by the third harmonic. The spurs
from offset, gain, and timing mismatches are all suppressed
below —66 dB, which demonstrates the benefit of the proposed
PI pipelined-SAR architecture and the -effectiveness of
the proposed calibration techniques. Fig. 19 shows the
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measured dynamic performances with and without HSGE
calibration. The performance summary and comparison with
state-of-the-art ADCs are shown in Table 1. Comparing
with some high-resolution and high-speed ADCs, this design
achieves competitive conversion accuracy and speed with good
power efficiency in 65-nm CMOS.

V. CONCLUSION

This paper presents the detailed circuit designs and consid-
erations of a PI pipelined-SAR architecture. The conversion
errors due to the mismatches from offset, gain, and refer-
ence are discussed and corresponding calibration techniques
to correct these nonlinear errors are presented. The offset-
cancellation technique is optimized to compensate offsets from
both Op-Amp and comparators in the second stage, which
increases the robustness of the design. The nonlinear behaviors
of the reference mismatch between two stages have been
analyzed, and a corresponding HSGE calibration has been
proposed to improve both dynamic and static performance of
the conversion. The proposed techniques are implemented in
a 10-bit 500-MS/s PI pipelined-SAR ADC in 65-nm CMOS,
which achieves an SNDR of 55.9 dB with 8.2-mW power
dissipation and an FoM of 32 fJ/conversion step.
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