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Abstract— Among the biomedical imaging modalities, photoa-
coustic computed tomography (PACT) was one of the emerging
hybrid techniques in recent years. In designing the PACT
imaging system, a finite-bandwidth transducer is one of the
limited factors for the overall performance. As the target size
is inversely proportional to the dominant frequency components
of the generated photoacoustic (PA) signal, a broad bandwidth
transducer is desired for different scales’ imaging. In this paper,
a monolithic multiband capacitive micromachined ultrasonic
transducer (CMUT) array was designed and fabricated for the
reception of the wideband PA signals so as to provide high-
resolution images with high-frequency CMUT arrays and present
the high signal-to-noise-ratio major structure with low-frequency

Manuscript received July 26, 2017; accepted January 8, 2018. Date of
publication January 12, 2018; date of current version March 1, 2018. This
work was supported in part by the Science and Technology Development
Fund of Macau (FDCT) under Grant 087/2012/A3, Grant 047/2013/A2,
Grant 093/2015/A3, Grant 088/2016/A2, Grant 026/2014/A1, and Grant
025/2015/A1, and in part by the Research Committee of the University of
Macau under Grant MYRG2014-00010-AMSV, Grant MYRG2015-00178-
AMSYV, Grant MYRG2016-00157-AMSYV, Grant MYRGO079(Y 1-L2)-FST12-
VMI, Grant MYRG103(Y1-L3)-FST13-VMI, Grant MYRG2014-00093-FHS,
Grant MYRG2015-00036-FHS, and Grant MYRG2016-00110-FHS. (Corre-
sponding authors: Yuanyu Yu; Zhen Yuan.)

S. H. Pun is with the State Key Laboratory of Analog and Mixed-Signal
VLSI, University of Macau, Macau 999078, China.

Y. Yu was with the State Key Laboratory of Analog and Mixed-Signal VLSI,
University of Macau, Macau 999078, China, and also with the Department of
Electrical and Computer Engineering, Faculty of Science and Technology,
University of Macau, Macau 999078, China. He is now with the School
of Information Engineering, Lingnan Normal University, Zhanjiang 524048,
China (e-mail: yuyuanyu@gmail.com).

J. Zhang was with the Bioimaging Core, Faculty of Health Sciences,
University of Macau, Macau 999078, China. He is now with the Department of
Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182,
China.

J. Wang is with the State Key Laboratory of Analog and Mixed-Signal VLSI,
University of Macau, Macau 999078, China, and also with the Department
of Electrical and Computer Engineering, Faculty of Science and Technology,
University of Macau, Macau 999078, China.

C.-H. Cheng was with the Department of Industrial and Systems Engineer-
ing, The Hong Kong Polytechnic University, Hong Kong. He is now with
the School of Automotive Engineering, Wuhan University of Technology,
‘Wuhan 430070, China.

K. F. Lei is with the Graduate Institute of Medical Mechatronics, Chang
Gung University, Taoyuan 33302, Taiwan, and also with the Department
of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan 33305,
Taiwan.

Z. Yuan is with the Bioimaging Core, Faculty of Health Sciences, University
of Macau, Macau 999078, China (e-mail: zhenyuan@umac.mo).

P. U. Mak is with the Department of Electrical and Computer Engineering,
Faculty of Science and Technology, University of Macau, Macau 999078,
China.

Digital Object Identifier 10.1109/TUFFC.2018.2792784

CMUT arrays. To demonstrate its performance, a phantom
experiment was conducted to show and evaluate the various
qualities of multiresolution images. In addition, an in vivo
mouse model experiment was also carried out for revealing the
multiscale PA imaging capability with the multiband CMUTSs on
biological tissues. From the obtained results, the images from
different CMUT arrays could show the structures of the mouse
brain in different scales. In addition, the images from the high-
frequency CMUT arrays were able to reveal the major blood
vasculatures, whereas the images from low-frequency CMUT
arrays showed the gross macroscopic anatomy of the brain with
higher contrast.

Index Terms— Capacitive micromachined ultrasonic trans-
ducer (CMUT), multiband CMUT, photoacoustic computed
tomography (PACT).

I. INTRODUCTION

N THE medical area, imaging is both an important diag-

nostic modality in clinical assessment and an effective
aid to therapeutic treatment. With the rapid development of
imaging technology over a century, nowadays, numerous imag-
ing methodologies have been implemented and the imaging
techniques have profoundly altered the medical arena. Among
the available imaging techniques, photoacoustic computed
tomography (PACT) is an emerging hybrid imaging technique
that can reconstruct both the structural and functional informa-
tion of biological tissues with high resolution, high contrast,
and satisfactory penetration depth. PACT has been applied in
breast cancer diagnosis, brain structure imaging, and small
animal imaging [1], [2].

PACT is an imaging technology based on the photoa-
coustic (PA) effect. With short-pulsed laser excitations, part
of the photoenergy is absorbed by the target biological tissue
in accordance with the absorption property of the tissue with
respect to the wavelength of the laser. When the optical
excitation satisfying both thermal and stress requirements
of the PA effect, the absorbed photoenergy causes a local
transient thermoelastic expansion, which correlates with the
thermal diffusivity, thermal expansion coefficient, and the
elastic properties of the sample, and as a result, an acoustic
wave/stress wave is generated [1], [3].

Based on a small light absorbing sphere [3]-[5], the corre-
sponding PA signal generally has an “N”-shaped profile and
the PA pulse duration 7, and the half-power frequency range
of the PA signal flower t0 fupper are given by the following
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equations [4]:

2a
Tq = — ey
C
0.16¢ 0.51¢
flower = a f upper — T (2)

where c¢ represents the propagating velocity of the acoustic
wave and a depicts the diameter of the target sphere.

From (2), the frequency range of the PA signal is inversely
proportional to the dimension of the sphere, i.e., higher
frequency PA signal is anticipated for a sphere with smaller
radius [3], [4]. Propagating from its source, the PA signal is
equivalent to the traveling of ultrasonic wave in the medium
where the attenuation is increased with frequency [1]. Then,
the PA signal is detected by using an ultrasonic detector that
can be selected from piezoelectric-based transducers [6], [7],
capacitive micromachined ultrasonic transducer (CMUT) [8],
and optical methods [9]-[11]. To construct an image with
the PA signals, PACT combines multiple PA signals received
from angles surrounding the objects [12], [13] or from a
transducer array [3]. To improve the imaging quality as
well as the performance of the overall acquisition process
of the PACT, numerous developments such as universal
back-projection algorithm [14], delay-and-sum beam forming
algorithm [12], [13], exact numerical reconstruction algo-
rithm [15], 3-D reconstruction algorithm based on the focal-
line concept [16], Neumann series-based algorithm [17], and
gradient-based bound-constrained split Bregman method for
large-scale 3-D reconstructions [18] were major reconstruction
algorithms in the literature published recent years.

Among various ultrasonic transducers for detection of the
PA signal, as mentioned in [8] and [19], the use of CMUT
as a PA signal detector has several advantages, such as wider
bandwidth and different sizes can be easily fabricated by using
the silicon micromachining technology [20], better matching
of acoustic impedance to the human body [21], easier to form
ring-type/2-D arrays [22], and facile integration with front-end
electronics [20].

From the literature, attempts have been made to demon-
strate the capabilities of using CMUTs for PA imaging and
new designs were reported for improving the PA imaging
system design and quality. For example, Wygant et al. [23],
Vaithilingam et al. [8], [24], [25], and Chee et al. [26]
focused on effective scanning for the volumetric PA imag-
ing using 2-D CMUT arrays. In terms of imaging quality
improvement, integration of front-end electronics by using
the flip-chip bonding technique [8], [23]-[25], [27], [28] and
wide bandwidth CMUTs are the popular choices [27], [28].
More specifically, Ma et al. [27] and Kothapalli et al. [28]
used a 5.5-MHz CMUT array, which was integrated with
front-end electronics and had a 6-dB fractional bandwidth
above 100%, to achieve 35-dB signal-to-noise ratio (SNR)
PA image at 5-cm depth. Miniaturization for the PA imaging
system is one of the main trends to use CMUT for the PA
imaging system. Up to date, Chen et al. [29] proposed an
infrared transparent silicon CMUT array to miniaturize the PA
imager head, and Cheng et al. [19] fabricated a CMUT array
with suitable electrically isolation for minimally invasive PA

imaging applications [19]. Chee et al. [30] reported a dual-
frequency CMUT array, and Zhang et al. [31] also published
a dual-band CMUT array on for higher integration of the PA
system. Recently, Asao et al. [32] proposed their CMUT-based
PA mammography simultaneously acquiring both PA and
ultrasound images. Further to the technological observation,
the authors also witnessed various imaging targets with CMUT
from the literature and the major samples were phantoms
with fishing lines [8], human hairs [26], [30], and horse
hairs [27], [28]. For biological experiments with CMUT-based
PA imaging system, Vaithilingam et al. [8] and Vaithilingam
et al. [24] used the pig blood phantom embedded inside chick
breast tissue for investigation. Lately, Zhang et al. [31] and
Asao et al. [32] advanced the PACT imaging experiments on
zebrafish and human subjects.

To improve the imaging quality of the PACT based on
the CMUT technology, in this paper, a new monolithic
multiband CMUT for PACT is proposed. By fabricating five
CMUT arrays with different dimensions on the same die,
the proposed CMUT arrays, whose resonance centered at
different frequencies, cover a wide range of bandwidth, from
1.8 to 10.6 MHz. According to [7] and [33], a wide bandwidth
ultrasonic detector can improve the quality of the PA image,
whereas high-frequency components of the PA can resolve
better details of the small structure (higher resolution) and
the low-frequency components give the major structure with
stronger signal strength (higher contrast).

The basics of the PACT and a brief review of CMUT applied
in the PACT were introduced in this section. The design of the
CMUT and the characterization of the fabricated CMUT arrays
will be discussed in Section II. In Section III, the configuration
of the PACT imaging system and the detail technique regarding
the PA measurement will be given. The obtained experimental
results from phantom and in vivo mouse model and the
corresponding discussion can be found in Section I'V. To wrap
up, the conclusion regarding the reported work is drawn in
Section V.

II. DESIGN AND IMPLEMENTATION
A. Design of the Multiband CMUT Arrays

The motivations behind the design of these monolithic
multiband CMUT arrays are mainly based on the properties of
the PA signal that higher frequency components are generally
used to resolve small target feature, whereas low-frequency
components are less attenuated and thus give higher contrast
image. In addition, the small target absorbs less optical energy
in comparison with the large one with the same absorptivity.
Therefore, a wide bandwidth detector for the PA signal would
be beneficial for imaging of heterogeneous targets, e.g., bio-
logical tissues.

However, it would be a challenging task to fabricate a
specific dimension CMUT with extensively wide bandwidth
as this CMUT requires carefully balanced optimization among
several design parameters including the membrane thickness,
density of membrane material, radiation impedance, and the
fill factor. In addition, a wideband CMUT inevitability suffers
from low mechanical quality factor, Q, as the fractional
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bandwidth of a transducer is inversely proportional to Q [34];
in the meanwhile, a wide bandwidth is usually achieved at
the expense of lower reception sensitivity. According to [35]
and [36], the 6-dB fractional bandwidth of CMUT is generally
less than 150%. Therefore, in this paper, by using multiple-
frequency CMUTs to extend the bandwidth and similar to
Chee et al. [30], the authors proposed to use five CMUT
arrays with different frequencies, which were fabricated on
the same die, for PA signal reception with extended bandwidth
from 1.8 to 10.6 MHz. In such a way, the form factor of the
CMUT arrays is kept, while the detecting capability for the
PA signal can be enhanced. For the sake of completeness, it is
worth mentioning that the current methodology has deficien-
cies including heterogeneous power system for our multiband
CMUT cells, more complexity in PA signal acquisition, and
long time required for PA signal acquisition.

For a circular CMUT immersed in liquid, the damped
resonant frequency (angular frequency) of a membrane (f;),
provided that the membrane geometry is much smaller than
acoustic wavelength, can be evaluated by using the following

equation [37]:
2.98h | E
r? Pp (1-0?)

fr=—F— (3)
/1+0.6725
Pp

where h represents the thickness of the CMUT membrane, r
is the radius of the membrane, E depicts Young’s modulus
of the membrane, p, is the density of the membrane, o is
Poisson’s ratio of the membrane, and p; depicts the density of
the liquid.

For the multiband CMUT arrays, in accordance with (3),
the resonant frequencies of CMUT arrays can be determined
by the thicknesses and radii of the membranes with all CMUT
elements fabricated on the same die. However, the thicknesses
of the membranes for all the CMUT cells will be similar to
the membranes are formed by using the low-pressure chemical
vapor deposition (LPCVD) process. In such a way, the reso-
nant frequencies of the CMUT arrays can only be set by chang-
ing the radii of the membranes. In consideration of the material
properties of the membrane, which is low-stress silicon nitride
with £ ~ 220 GPa, ¢ ~ 0.263, and p, ~ 3270 kg/m3,
the properties of soybean oil (p; ~ 930 kg/m?) [38] and
450 nm thick of the membrane, the membrane radii should
be in the range of 9-18 um for working frequency from
2 to 10 MHz by using (3) and ought to avoid the fraction
of micrometers.

Further to the initial design for determining the dimen-
sion of the multiband CMUT arrays, finite-element analy-
sis (FEA) with the commercial package COMSOL Multi-
physics 4.4 (COMSOL Inc., Stockholm, Sweden) was used to
investigate the center frequencies of the immersed CMUTs.
For each type of CMUT cells, a 2-D axisymmetric model
was built to represent the CMUT with a bottom electrode,
insulator, vacuum gap, membrane, and top electrode. In the
FEA model, a cylindrical waveguide above the device was
introduced for simulating the surrounding medium [39]. Its
width was set to half of the CMUT cell pitch (i.e., 32 xm),
and its height was equal to one wavelength of the working
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Fig. 1. Two-dimensional axisymmetric FEA model of the CMUT design

with a membrane radius of 11 xm. Please note that the figure is drawn in
scale.

TABLE I
PHYSICAL PARAMETERS OF THE CMUT

Number of elements in the arrays 10

Length of an element, um 11,800

Width of an element, um 880

Cell radius range, um 10, 11, 13, 15, 17

Top electrode thickness, pm 0.30
Membrane thickness, pm 0.45
Cavity height, um 0.30
Insulator (Si3N4) thickness, pm 0.15
Insulator (SiOy) thickness, um 0.10

frequency. On the top of it, an absorbing boundary was applied
to represent the medium extended to infinite space and no
reflected wave bounced back from its boundary. In this paper,
five FEA models with various dimensions were built and one
of them (membrane radius: 11 xm) is shown in Fig. 1 for
reference.

In the simulation, the electromechanics (emi) and pressure
acoustic (acpr) modules were coupled and the output pressure
of the CMUT cell was calculated by averaging along the
interface between the membrane and the medium with the
prestressed analysis. During the analysis, each CMUT was
biased with 85% of its collapsed voltage and then an AC
voltage was applied to the membrane. After simulations were
performed, five types of CMUTs were fabricated with the
dimension as listed in Table I. Geometrically, each type of
CMUT cells is arranged into two elements next to each other
forming one CMUT array and the pitch of CMUT cells is
64 um. In such a way, there are ten elements of CMUT on
the die and the arrangement of the multiband CMUT arrays
is illustrated in Fig. 2(a). The estimated center frequencies of
five CMUT arrays were 2.8, 3.7, 5.1, 7.3, and 9.4 MHz.
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Fig. 2. (a) Arrangement and orientation of the CMUT arrays on the substrate.
Different bands of CMUT arrays are arranged in perpendicular to the surface
of the rotating stage. Please note that the picture is not drawn in scale.
(b) Photograph of the die containing the multiband CMUT arrays, and the
die is bonded on a PCB.

B. Fabrication of the Multiband CMUT Arrays

The CMUT arrays were fabricated on an n-type highly
doped 4-in silicon wafer <100> using a standard sacrificial-
release process with five masks [40]. At the beginning, a com-
bined layer of 100-nm silicon oxide by using the dry oxidation
process and 150-nm low-stress silicon nitride by the LPCVD
process were then formed on the wafer as an insulator. Next,
a 300-nm polysilicon film was deposited on the insulator by
the LPCVD process to serve as a sacrificial layer. Afterward,
CMUT cells with various dimensions and release channels
were patterned by photolithography with Mask #1 and reactive
ion etching (RIE) was performed to remove the exposed
polysilicon and stop at the insulator. After removing the
residual photoresist, the whole wafer was coated with a low-
stress LPCVD silicon nitride layer with a thickness of 450 nm
to create the membrane layer and the support structures of the
CMUT cells.

At each release channel, an etch hole with a diameter of
2 um was first patterned by photolithography with Mask
#2 and was etched with the RIE process. To form the cavity
under the membrane of CMUT, the wafer was immersed
in 22.5 wt% KOH solution and the polysilicon under the
membrane was etched via the etch holes and channels.

After creating the cavity, a KOH decontamination process
was carried out, followed by a plasma-enhanced chemical
vapor deposition (PEVCD) process growing a 1.2-xm silicon
nitride layer to seal the etch holes. Due to the low-pressure
operation of the PEVCD, the cavity of the CMUT was
vacuum sealed and the CMUT became suitable for immersed
operation. To restore the membrane to its designated thickness,
an additional RIE was used to etch back the silicon nitride
grown by the preceding PECVD process with Mask #3 to
protect the sealed holes.

Next, Mask #4 was used with photolithography and RIE
processes to expose the doped silicon substrate (bottom elec-
trode of the CMUT) and a 300-nm aluminium layer was
deposited by using the thermal evaporation. On the alu-
minium layer, the photolithography based on Mask #5 and
the high-density plasma RIE (HDP-RIE) were performed in
turns to form the top electrodes, bonding pads, and the
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Fig. 3. Measured electrical characteristics of the five CMUT elements in

air. (a) Real part of the impedances of the CMUT elements. (b) Phase plot
of the impedance of CMUT elements.

interconnections for the CMUT arrays. Finally, the residual
photoresist on the aluminium was cleaned by oxygen plasmas
with HDP-RIE for wire bonding.

The orientation and arrangement of the multiband CMUT
arrays are illustrated in Fig. 2(a), while the photograph of the
CMUTs die bonded on a printed circuit board (PCB) is shown
in Fig. 2(b).

C. Measurements of the Multiband CMUT Arrays

The electrical characteristics of the multiband CMUT arrays
in air were measured with a network/spectrum/impedance
analyzer (Model: 4395A, Agilent Technologies Inc., USA)
and a programmable DC power supply (Model: HSPY-400-
01, Beijing HanShengPuYuan Technology Co., Ltd., China).
Prior to the measurement, the analyzer was properly calibrated.
Fig. 3 shows the measured impedance and phase plots for
the five CMUT elements. As indicated in Fig. 3, the resonant
frequencies of the five DC-biased CMUT arrays in air are 6.9,
8.7, 11.9, 16.3, and 20.2 MHz, respectively.

To further characterize the multiband CMUT arrays,
the standard pulse-echo measurements for the CMUT arrays
in soybean oil were performed with an output DC power
supply (Model: U8031A, Agilent Technologies Inc., USA),
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Fig. 4. Normalized 6-dB bandwidth for the fabricated multiband CMUT arrays by using the pulse-echo measurement in soybean oil. The measured center
frequencies of the CMUT arrays were (a) 2.9, (b) 3.7, (¢) 5.3, (d) 7, and (e) 9.3 MHz with 6-dB bandwidth of (a) 3, (b) 2.7, (¢) 3.2, (d) 2.6, and (e) 2.5 MHz.
(f) Theoretical PSF by the CMUT arrays based on the pulse-echo measurement result.

a programmable DC power supply (Model: HSPY-400-01,
Beijing HanShengPuYuan Technology Co., Ltd., China),
two waveform generators (Model: 33500B series, Keysight
Technologies Inc., USA), a digital oscilloscope (Model:
DSOS254A, Keysight Technologies Inc., USA), and a
homemade trans-impedance amplifier circuit (Gain: 39- and
3-dB and bandwidth: 1 kHz-23 MHz) mainly consists of an
operational amplifier (Model: OPA657, Texas Instruments,
USA) and a protection switch (Model: ADG5419, Analog
Device, USA). As shown in Fig. 4(a)-(e), the frequency
responses (normalized magnitude) of the five CMUT arrays
on the same die are plotted. From Fig. 4(a)—(e), the center
frequencies of the CMUT arrays locate at 2.9, 3.7, 5.3,
7, and 9.3 MHz having the 6-dB bandwidth of 3, 2.7,
3.2, 2.6, and 2.5 MHz, respectively. The joint response of
all the CMUT arrays can cover a wide range of acoustic
waves frequencies (from 1.8 to 10.6 MHz). In addition,
from Fig. 4(c)—(e), a frequency droop around 7.8 MHz was
observed. According to [41] and [42], this is mainly due to
the substrate ringing phenomenon at the substrate resonance
frequency which is inversely proportional to the thickness of
the substrate. In this design, the substrate thickness of the
fabricated CMUT arrays is 525 & 25 um corresponding to a
frequency droop at 8.1 4+ 0.4 MHz theoretically.

As widely discussed in [7], the qualities of the PACT images
are affected by the convolution of the optical structure of the
target, profile of the laser excitation, and the impulse response
of the detector. For an ideal absorption point target with infinite

small size, the frequency spectrum of the PA signal has a
constant power spectral density across the whole frequency
range. With band-limited PA signal detectors, the reconstructed
target in an image can be anticipated to have a finite diameter,
which is inversely proportional to the center frequency and the
frequency band of the detector. For this imaging paradigm,
Xu and Wang [43] reported an analytical formulation for
estimating the point spread function (PSF) resulted from band-
limited detector as follows:

ke f1GucR) ki, ji(kicR)

PSF(R) = 4
(R) 272 kucR 272 kicR @

2 2
kite = ”fHC ke = e )

where fi. and f. are the low and high cutoff frequencies of
the PA signal detector, c is the speed of sound, R represents
the displacement from the point source, and jj is the spherical
Bessel function of the first kind.

In Fig. 4(f), the corresponding PSFs for the five CMUT
arrays are shown. It can be found that the PSF is becoming nar-
row (i.e., approaching to the ideal point source) with increasing
frequency of the CMUT arrays. Thus, high-frequency CMUT
array is necessary for small target imaging. On the contrary, for
a large-size target, the high-frequency CMUT array is gener-
ally incapable of picking up low-frequency PA signal and this
results in significant artifacts in the reconstructed image [7].
Therefore, our proposed monolithic multiband CMUT arrays
can be used to image for extended range of targets.
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Fig. 5. (a) Configuration of the custom built PACT imaging system. The
proposed multiband CMUT arrays are placed next to the biological sample,
and they are immersed in soybean oil in a separate container to provide
suitable electrical isolation between CMUT electrodes. (b) Configuration for
imaging the brain of the mouse in vivo.

ITI. EXPERIMENTAL SETUP

To test for the performance of the multiband CMUT arrays,
a PACT imaging system was built. As shown in Fig. 5(a),
a phantom was immersed in a tank, which was fixed on a
motorized rotating stage (Model: X-RST120AK-E03, Zaber
Technologies Inc., Canada). Alternatively, for performing the
in vivo imaging on the mouse, a hole with a diameter of 30 mm
was opened at the bottom of the water tank and it was cov-
ered with a ~50-um-thick transparent polyethylene film (low
absorption coefficient for the current laser excitation) to isolate
the tank water from the imaging target. The experimental
mouse was situated on the motorized rotating stage as shown
in Fig. 5(b).

In this configuration, the laser light source was an optical
parametric oscillator (Model: Surelite II-20, Continuum Co.,
USA) generating laser at 532-nm wavelength with a repetition
rate of 20 Hz and ~5 ns in duration. Several mirrors were
used to adjust the direction of the laser beam and a concave
lens was employed to reshape the laser beam, so that the
biological tissue was irradiated from its top (z-axis) direction
and was covered completely by the laser beam. During the
experiment, the optical fluence was kept below 10 mJ/cm?
fulfilling the safety limit of 20 mJ/cm? prescribed by the
American National Standards Institute [44]. In the current
setup, the monolithic multiband CMUT arrays were placed
next to the biological sample.

In contrast to the pioneering works of using CMUT in
PA applications, in which vegetable oil was used as coupling
material in the experiments [8], [30], the biological samples
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Fig. 6. Block diagram of the back-projection algorithm for the image
reconstructions. The inlet exhibits the relative scanning position i for the image
reconstruction.

were immersed in water in the current experiments. Com-
paring soybean oil and water as coupling material for the
PA applications, in general, water is a better choice as its
absorption coefficient is much less for laser light wavelength
below 570 nm [45]. As a result, the background noise gen-
erated by the coupling medium is less. In addition, current
multiband CMUT arrays have no passivation layer on their
tops and operate with high applied DC bias voltages to the
CMUT arrays. Therefore, a polyethylene container with a
thickness of ~50 um was used to accommodate soybean
oil as a second coupling material for the CMUT arrays to
provide suitable electrical insulation. This arrangement can be
considered as the PA signal traveling through a three-layered
medium (water—polyethylene—soybean oil) to reach the CMUT
arrays. Assuming that the PA signal is a plane wave incident
on to the medium in the normal direction, the transmission
coefficient 7T; of the PA signal through the medium can be
given by the following equation [46]:

4

T =
2
2+ (%—T + %) cos? koL + (212223 + M) sin? ky L

Z
(6)

where Z1, Z>, and Z3 are the specific acoustic impedances
of water, polyethylene, and soybean oil, respectively.
ko = (w/cp) is the wave number in polyethylene, @ depicts
the angular frequency, ¢y represents the acoustic velocity
in polyethylene, and L corresponds to the thickness of
polyethylene.

In the current experimental setup,
acoustic impedances of water (Z; = 1.48 MRayl),
polyethylene (Z» = 1.794 MRayl), and soybean
oil (Z3 = 1.346 MRayl) [38], [47], the overall intensity
transmission coefficient of the PA signal from 1 to 15 MHz
is changed from 0.996 to 0.942 by (6). From the calculation,
it can be found that the proposed method only introduces
slight attenuation to the PA signal.

with  the
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Pact images of the phantom experiment using the custom built PACT imaging system. The images were reconstructed from the signal received by

the CMUT arrays whose resonance frequencies at (a) 2.9, (b) 3.7, (c) 5.3, (d) 7, and (e) 9.3 MHz. (f) Photograph of the phantom with two human hairs at
its center. The signal amplitudes are sampled along the yellow lines shown in Fig. 8.

In the current experimental configuration, the multiband
CMUT arrays were fixed with supporting rods and were
placed next to the sample. For each element of CMUT arrays,
a DC bias was supplied by a programmable DC power sup-
ply (Model: HSPY-400-01, Beijing HanShengPuYuan Tech-
nology Co. Ltd., China) with 85% of its collapse voltage
and the acquired PA signals were amplified by a 20-dB
preamplifier (Model: Preamp2, Ultratec, Inc., USA), a 39-dB
amplifier (Model: 5073PR, Olympus Co., Japan), and digitized
with a data acquisition card (Model: PXI-5124, National
Instruments Co., USA) at 100 MSamples/s.

During the imaging process, a Labview program was used
to control the scanning and data acquisition in the system.
To acquire the PA signal for reconstruction of the tomo-
graphic image, the sample was scanned for a full revolution
in 120 steps. In each scanning position, the received PA
signal was averaged from 40 measurements for each CMUT
element. Upon the completion of the PA signal acquisitions, a
back-projection algorithm [14] implemented on MATLAB
was used to reconstruct the tomographic images of the
biological sample based on the cylindrical geometry. With
the frequency responses of the CMUT elements, detecting
positions, acceptance angles of the CMUT elements, the PA
signal restoration filters, Shepp—Logan filters, and Hanning
window filters, the image reconstruction algorithm rebuilt
the five PA images with all scanning positions for each
CMUT element in turns. Fig. 6 illustrates the block diagram
of the back-projection algorithm employed for the images
reconstruction.

With the PACT imaging system, both phantom and in
vivo biological experiments were designed and conducted to
manifest its performances. The total time required for the
PA signal acquisition and image reconstruction was about
20 min and 30 s. In these experiments, the configuration of the
PACT imaging system was the same except for the biological
experiment, the mouse was placed beneath the water tank with
its head aligned with the open hole on the bottom of the tank.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. PACT With Phantoms

In the first phantom experiment, two human hairs with
diameters of around 100 #m were anchored inside a cylin-
drical phantom as shown in Fig. 7(f). The composition of the
phantom consists of intralipid (scatter), India ink (absorber),
and agar powder (1%-2%) for solidifying the solution. Except
for the human hairs, the background absorption coefficient and
reduced scattering coefficients are 0.01 and 1 mm~".

As shown in Fig. 7(a)-(e), the images of the phantoms
were reconstructed by using the PA signal detected from five
CMUT arrays. In general, all reconstructed images were able
to capture the pattern of the two human hairs in phantom.
However, the obtained images were slightly different with
CMUT arrays in quality. The sizes of the hairs in the
reconstructed images of high-frequency band CMUT
arrays (e.g., CMUT arrays centered at 7 and 9.3 MHz) were
closer to the physical size than those obtained from low-
frequency band CMUT arrays (e.g., 2.9 and 3.7 MHz). These
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Fig. 8. Amplitude of the signals sampled from the acquired images along

the yellow dash lines shown in Fig. 7(a)—(e).

matched with the theoretical investigation of the CMUT
arrays for the PA signal detection discussed previously.
Quantitatively, Fig. 8 also shows the image amplitude
sampled along the yellow dashed lines shown in Fig. 7(a)—(e).
In Fig. 7(a)-(e), it could be found that the lower frequency
CMUT arrays (e.g., 2.9 and 3.7 MHz) generally have a higher
amplitude in comparison with the high-frequency arrays.
In addition, from the reconstructed images, the averaged
signal amplitudes inside a cross mark similar to size of the
hairs were measured [30] and the SNR of the images from
CMUT arrays is plotted in Fig. 9. One can find that the SNR
is generally higher for images from low-frequency arrays,
and it is inversely proportional to the frequency of the CMUT
arrays.

From the phantom experiment, one can find that the
proposed monolithic multiband CMUT arrays can provide
enhanced performance for the PACT. First, using the pro-
posed multiband CMUT arrays, the PACT system can resolve
details of small structure and give major structure with high
SNR in the absence of sophisticated broadband ultrasonic
detectors. Moreover, current approach also enables one to
select the most suitable image depending on the size of the
target.

B. PACT With In Vivo Mouse Model

In this in vivo experiment, all experimental procedures are
complied with the rules on animal research and approved
by the Animal Care and Use Committee of the University
of Macau. Before the PA imaging, a nude mouse (male,
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Fig. 9. Average SNR of the PACT images from the phantom experiment.

six weeks, 50 g) was continuously anaesthetized with 2%
isoflurane. Once the mouse was in fully anaesthetized state,
the hair on the mouse head was shaved off properly by using
a razor. Then, the mouse was secured by using a custom built
fixture so that its head was aligned with the bottom hole
of the water tank. In addition, a thin layer of transparent,
ultrasound coupling gel was applied between the polyethylene
film and the head of the mouse to enhance the coupling
efficiency of the PA signal. In this paper, the in vivo experiment
was performed on two mice having similar physiological
status.

Fig. 10(a)—(e) shows the PACT images of the mouse brain
obtained by the five center frequencies CMUT arrays. For
comparison, the photograph of the mouse head used in the
experiment is shown in Fig. 10(f). In Fig. 10(f), with the
multiresolution capability of the PA imaging system enhanced
by the proposed monolithic multiband CMUT arrays, different
morphologies of the physiological structure of the brain can
be found.

In general, from Fig. 10(f), the reconstructed images show
increasing quality and detail of the brain with higher fre-
quency detectors. To further explain the obtained PA images,
the mouse brain and its major blood vasculatures beneath the
skull were illustrated as shown in Fig. 10(g) [48], indicating
the major vessels such as transverse sinus, superior sagittal
sinus (SSS), inferior cerebral vein (ICV), superior cerebral
veins (SCVs), and the olfactory lobe (OL) in the brain.
In comparison, the reconstructed image from the PA signal of
2.9-MHz CMUT array can clearly show the shape of the brain
and the large blood vessels—SSS and ICV. However, the detail
structure of the brain is missing. With a higher frequency
CMUT array —3.7-MHz CMUT array, the reconstructed image
shows better structure of the brain and the OL of the brain
is revealed. For the reconstructed image of 5.3-MHz CMUT
array, the outer shape of the brain becomes blur; on the
contrary, the structure of the blood vessels shows higher
contrast. In particular, the SCV can be seen on the image
but its dimension is not accurate. In comparison, the structure
and dimension of the SCV on the reconstructed images from
7- and 9.3-MHz CMUT arrays are captured with high contrast,
especially, in Fig. 10(e).
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(a)-(e) Reconstructed PACT images of the mouse model obtained by using the multiband CMUT arrays. (f) Photograph of the mouse head (hair

removed) before experiment taken by a camera. (g) Illustration of the anatomy of the mouse brain showing the major blood vasculatures [48].

V. CONCLUSION

In this paper, multiband CMUT arrays were designed and
fabricated for detecting the ultrasonic waves in the PACT.
The proposed design integrated five CMUT arrays (centered
frequencies: 2.9, 3.7, 5.3, 7, and 9.3 MHz) on a single die to
provide a wide range coverage (~1.8-10.6 MHz) for acoustic
signals generated by the PA effect. In addition to the basic
pulse-echo measurement of the CMUT arrays, both phantom
and in vivo biological experiments were performed with a
custom built PACT imaging system to manifest the capabilities
of the proposed designed for the multiscale PACT.

In conclusion, this paper reveals that the CMUT technology
can provide a monolithic multiband solution for the multi-
scale PACT imaging system, which introduces the distinct
advantages of CMUT to improve the performance of PACT
imaging system. The experimental results also demonstrate
that the current design can yield multiresolution tomographic
images from various biological samples. In addition, the pro-
posed methodology can ease the challenges of fabricating a
wideband transducer for the reception of PA signal in PACT
for biological tissue.

In the future, in order to improve the current PACT imaging
system towards real-time, CMUT arrays with higher reception
sensitivity can be built so as to reduce the lengthy PA
signal acquisition time. Similarly, for small animal imaging

application, a full-ring array [49], [50] or a spherical array [51]
can be built with interlaced multiband CMUT elements
to eliminate the mechanical scanning mechanism. Further-
more, more sophisticated reconstruction algorithm is going to
develop to morph multiscale images into one composite image
and passivation layer will be built to provide suitable intrinsic
electrical insulation for the CMUTs.
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