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Abstract—The similarity is a fundamental measure from the
homology theory in bioinformatics, and the biological sequence
can be classified based on it. However, such an approach has not
been utilized for electroencephalography (EEG)-based emotion
recognition. To this end, the sequence generated by choosing the
dominant brain rhythm owning maximum instantaneous power
at each 0.2 s timestamp of the EEG signal has been proposed.
Then, to recognize emotional arousal and valence, the similarity
measures between pairwise sequences have been performed by
dynamic time warping (DTW). After evaluations, the sequence
that provides the highest accuracy has been obtained. Thus, the
representative channel has been found. Besides, the appropriate
time segment for emotion recognition has been estimated. Those
findings helpfully exclude redundant data for assessing emotion.
Results from the DEAP dataset displayed that the classification
accuracies between 72%—75% can be realized by applying the
single-channel data with a S s length, which is impressive when
considering fewer data sources as the primary concern. Hence,
the proposed idea would open a new way that uses the similarity
measures of sequences for EEG-based emotion recognition.

Index Terms—Electroencephalography (EEG), brain rhythm
sequencing (BRS), similarity measure, sequence classification,
emotion recognition.

[. INTRODUCTION

motion is one of the fundamental psychological factors
that can influence many aspects of daily life, including
communication skills, social interaction, and work efficiency.
Therefore, its automated recognition is meaningful. In recent
years, the electroencephalography (EEG) signal exhibits
great potential in this field as it records the neural oscillations
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that appeared in the brain, which shows a closer relationship
with the emotional reaction.

Toward EEG-based emotion recognition, the trustworthy
feature is a primary concern. In previous works [1]-[3], it is
found that the brain rhythms are the related features that have
been widely employed. Specifically, they are originated from
classifying the EEG into five frequency sub-bands: 0—4 Hz
(), 4-8 Hz (6), 8—13 Hz (), 13-30 Hz (), and 30-50 Hz (y)
[4]. Moreover, the variations of such brain rhythms have been
viewed as the characteristics to recognize emotional arousal
and valence. For instance, Koelstra ef al. [1] explored that the
powers of 0, a, and y show negative correlations with arousal;
Kim et al. [2] reported that the o power usually changes with
the valence states of fear (negative) and happiness (positive).
In addition, the frontal asymmetry of o power shows a steady
correlate of valence; Onton and Makeig [3] concluded that
there is a positive correlation between the powers of high
frequency sub-bands (such as f and y) and valence.

The aforementioned works were based on the properties of
rhythmic powers. However, the characteristics concerning the
time-related occurrences of particular brain rhythms have not
been investigated. Considering the similarity is a fundamental
measure from the homology theory in bioinformatics [5], and
biological sequence can be classified based on it, nonetheless,
such a method has not been utilized for EEG-based emotion
recognition, so an approach named brain rhythm sequencing
(BRS) that interprets the EEG as the time-related sequential
format consists of dominant rhythms has been proposed in
this work. By applying it, the time-frequency characteristics
of EEG can be presented simultaneously, which are available
to perform the sequence classification through the similarity
measure. Besides, after evaluating these sequences generated
from the EEG recordings on different channels and times, the
representative channel that yields the highest accuracy can be
determined accordingly. Meanwhile, the time segment that is
appropriate for recognition can also be estimated during the
assessments. Those properties obtained can helpfully exclude
redundant data and save the computation cost for EEG-based
emotion recognition. Hence, the proposed idea would open a
novel way that adopts the similarity measure of brain rthythm
sequence classification to design the portable emotion-aware
application when considering fewer data sources as the main
concern.

The remainder is arranged as follows: Section II describes
the experimental data from the DEAP dataset. Then, Section III
elaborates on the proposed methodology. Section IV shows the
results and discussion. Finally, the conclusion of this work has
been drawn in Section V.
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Figure 1. Proposed BRS by choosing the dominant brain rhythm owning maximum power at each (0.2 s timestamp of an EEG signal. (NA: normalized amplitude)
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Figure 2. Valence classification (HV/LV) using sequences from the F8 channel
of subject S8, DEAP. Here. DTW is used for measuring the similarity, and the
query sequence is assigned as the same emotional state as the target sequence
that presents a higher similarity level.

II.

In this work, the EEG signals for the experiment are from the
DEAP dataset [1]. It included 32 subjects (17 males and 15
females, age: 23-37 years). Each subject watched 40 different
one-minute long music videos to elicit various emotional states.
After watching each video, the subjects rated it (1-9) based on
arousal (A) and valence (V). Thus, according to the individual
ratings, the emotions have been labeled into several sub-groups
for recognition. In arousal: high arousal (HA) with A = 5 and
low arousal (LA) with A < 5; in valence: high valence (HV)
with V = 5 and low valence (LV) with V < 5. Besides, a 10-20
EEG system involving 32 channels was applied for recordings.
So, for each subject, the data size was 60 s x 32 EEG channels *
40 trials. Furthermore, the sampling rate was 128 Hz, and the
analog passband filtering with 0.01-100 Hz has been used for
data pre-processing, along with removing the artifacts.

EXPERIMENTAL DATASET

1II. METHODOLOGY

The BRS aims to interpret the EEG in a chronological order
based on dominant brain rhythms, which can be accomplished by
the time-frequency analysis (TFA). Moreover, the Wigner-Ville
distribution (WVD) is a typical TFA category that enables the
evaluation of signal power in the specific frequency domain and
then localizes it into a corresponding time, which provides vital
properties for realizing BRS. However, the WVD usually causes
cross-terms that restrict obtaining the frequency information at a
shorter instant precisely. Therefore, a suitably smoothing of the
WYVD along the time and the frequency directions is normally
adopted. Such a variant is named the smoothed pseudo WVD
(SPWVD) (1):

SPW (1,0) = _[ h(r) _[-g(.s'—f)x(s F %).r'(s —%)e'-"""dsdr (1)

-

32

The independent control of A(7) and g(r) help to migrate the
cross-terms. In addition, to calculate the precise time indices of
the higher power regions in the generated time-frequency plane,
the reassignment is considered [6]. Its operation is to relocate
each value of the SPWVD at any point (7, @) to another point
(7.,@), which is the center of gravity of the signal power
distribution around (7. @). So, the reassigned value of SPWVD
at any point (7,@®) is the sum of all values reassigned to that
point. This approach is reassigned SPWVD (RSPWVD) (2):

e

SPW(t' o' g . h)y= I J- SPW (t.e;g.h)
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with 7, = 1g(t) and Dy(1) = dh(1)/dl.

Now, aiming to generate the rhythm sequence data from the
time-frequency plane, the whole time is divided into several
timestamps with each of 0.2 s length, which is decided by the
relationship between the average reaction time of neurons and
EEG [7]. On the other side, the frequency direction is divided
into five parts according to the ranges of five brain rhythms.
Undoubtedly, the sequence needs only one dominant rhythm
denoted at each timestamp. Hence. the instantaneous rhythmic
power is investigated, as the maximum one can reflect the vital
sub-band that provides a greater contribution in terms of power
discharge, which is pivotal information of the EEG. As a result,
the dominant rhythm that shows maximum power contribution
at each 0.2 s timestamp is chosen for the BRS. Following this
way, Fig. | depicts a sample of BRS, in which an EEG signal
from the FP1 channel of subject S1 in the DEAP dataset locates
at the top, and its rhythm sequence at 25-30 s lies at the bottom.

Next, the generated sequences can be evaluated for emotion
recognition based on the similarity measure. Logically, the
similar structures between the two sequences indicate similar
functions; whereas, the dissimilarities incur various categories.
Thus, the similarity measure can be applied for recognizing the
rhythm sequences into different emotional states. Moreover, to
perform the similarity measure for sequence classification, the
target sequences related to specific emotions should be found in
advance, which can be regarded as the standard templates. To
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this end, the individual ratings from the self-assessments are
utilized. Specifically, among the 40 experimental trials, the one
with the maximum A or V is assigned as HA or HV. Inversely,
the minimum A or V is assumed as LA or LV. Besides, if more
than one trial is equal to the maximum or the minimum, the trial
presented earlier is considered. For example, as for the valence
classification of subject S8, the maximum and minimum were
8.82 at trial 10 and 1.21 at trial 36. So, the generated sequences
from these two trials have been used as the target sequences of
HV and LV, as illustrated in Fig. 2. Then, the other trials have
been assigned as query sequences accordingly. Furthermore,
dynamic time warping (DTW), a distance-based approach that
calculates an optimal alignment is exploited to measure the
similarity level between pairwise sequences. Consequently, the
query sequence is assigned as the same emotional state as the
target sequence that exhibits a higher similarity result. Besides,
the sequences are generated based on the channels and times,
hence, the evaluations in this work have been performed on 32
channels and 5 types of time lengths (5s, 10 s, 20 s, 30 s, and 60
s). Finally, the vital properties for emotion recognition, such as
the representative channel and appropriate time segment, have
been obtained according to the highest classification accuracy.

Iv.

Table I displays the accuracies (mean =+ standard deviation)
based on different time lengths of sequences from 32 subjects,
in which the first column denotes the length and the rest are the
accuracies of arousal and valence. As seen, the accuracies by
using diverse lengths are close. A short length is helpful to save
computation cost, so the 5 s has been chosen to segment the
sequences for emotion recognition. In this way, the arousal
classification results of subject S13 have been illustrated in Fig.
3, in which the three maps depict the accuracies of 32 channels
at the three chosen segments from the periods of start (0-5 s),
middle (25-30 s), and end (55-60 s) parts respectively. Here,
the deeper the red, the higher the classification accuracy. In Fig.
3, it can approximately disclose the performance of sequence
classification during the whole duration, and meanwhile, the
accuracy on the same channel dynamically changes during the
process. For example, the PO3 channel at 0—5 s provides higher
accuracy; whereas, it has lower results at other time segments.
It implies that the sequence from the PO3 channel at the start
period is more useful to recognize the arousal of S13. So, the
representative channel is PO3 and the appropriate time segment
is 0-5 s for arousal recognition of S13. Following this way, the
results of all 32 subjects have been summarized in Table II.

In Table II, as for the representative channel, besides the two
subjects (S1 and S6) are at the same location for arousal and
valence classifications, the others are from different locations.
It reveals that diverse locations cope with particular dimensions
in emotion recognition for most of the cases. Such a statistical
result is consistent with [8]. Furthermore, about the appropriate
time segments, S18 and S31 are found at the same period for
arousal and valence classifications; whereas, the segments of
the others are separated. It discloses that different emotional
dimensions are usually elicited by various pieces of the stimuli.
Meanwhile, it is observed that for 20 subjects, the appropriate
time segment of arousal is earlier than valence. It indicates that
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during the elicitation, arousal has been analyzed preferentially,
then valence has been recognized later. In addition, the results
of Table II also exhibit the individual characteristics in emotion
recognition, as the channels and times are varied among the
subjects. It is reasonable because there is a common sense in
emotion science that emotional reaction is more relevant to the
experiences, backgrounds, and cultures of the subjects [9]. In
this regard, the subject-dependent analysis generally produces a
better result than the subject-independent method. As a result,
the personalized models based on vital characteristics such as
the representative channel and appropriate time segment are
valuable for achieving EEG-based emotion recognition.

A comparative study with previous related works has been
conducted in Table III, in which the first column lists the work,
and the rest display the number of channels used, the applied
time length of EEG data, main methodology, and the accuracies
for arousal and valence classifications correspondingly.

TABLE 1
APPLIED TIME LENGTHS OF SEQUENCE AND CLASSIFICATION ACCURACIES

Length (s) | Arousal classification (%) | Valence classification (%)

5 75.66 + 6.34 72.86 £ 3.30

10 74.51 + 6.90 71.63 +3.71

20 73.03 £6.45 70.07 +4.47

30 71.79 +7.21 69.65+4.17

60 69.33+£7.12 67.19 +£4.58
TABLE II

REPRESENTATIVE CHANNEL AND APPROPRIATE TIME SEGMENT (5 S LENGTH)
FOR EMOTION RECOGNITION OF 32 SUBJECTS IN THE DEAP DATASET

Arousal classification Valence classification
Subject ATS ACC ATS ACC
Rl o o [R] o | @
S1 FC5 5-10 68.42 FC5 45-50 73.68
S2 F3 0-5 68.42 AF4 5-10 71.05
S3 PZ 15-20 84.21 F7 25-30 65.79
S4 P4 55-60 81.58 CP2 45-50 76.32
S5 PO3 35-40 73.68 P3 30-35 73.68
S6 T7 30-35 71.05 T7 4045 78.95
S7 P7 40-45 73.68 PZ 0-5 76.32
S8 F3 5-10 71.05 CP1 15-20 71.05
S9 F7 50-55 76.32 CP6 20-25 73.68
S10 T7 20-25 73.68 F3 3540 68.42
S11 P7 35-40 73.68 F3 50-55 73.68
S12 FP1 10-15 86.84 CZ 15-20 71.05
S13 PO3 0-5 89.47 AF3 10-15 68.42
S14 CP2 4045 81.58 T8 5-10 68.42
S15 P7 0-5 71.05 C3 25-30 68.42
S16 C4 10-15 73.68 CP2 35-40 81.58
S17 FP2 15-20 73.68 0] 35-40 73.68
S18 FZ 1015 71.05 T7 10-15 73.68
S19 FZ 0-5 76.32 02 5-10 71.05
S20 CZ 55-60 84.21 0] 25-30 76.32
S21 0Z 0-5 84.21 FC6 30-35 71.05
S22 PO4 35-40 73.68 FZ 50-55 73.68
S23 AF3 15-20 71.05 T7 45-50 73.68
S24 F3 20-25 84.21 AF4 0-5 73.68
S25 T8 15-20 81.58 PZ 55-60 71.05
S26 FC6 0-5 68.42 FZ 45-50 73.68
S27 F3 55-60 73.68 FC6 10-15 76.32
S28 FZ 40-45 68.42 P3 45-50 71.05
S29 P4 25-30 76.32 AF4 10-15 71.05
S30 FC2 35-40 65.79 P7 0-5 76.32
S31 CZ 35-40 68.42 FZ 3540 73.68
S32 FC6 15-20 81.58 F3 25-30 71.05

Acronym: RC-representative channel; ATS-appropriate time segment. ACC-
accuracy.

Authorized licensed use limited to: Universidade de Macau. Downloaded on February 14,2022 at 07:46:53 UTC from IEEE Xplore. Restrictions apply.



(b) 25-30s /\

100%

(c)55-60s /\

Accuracy

0
fo

Figure 3. Evaluations of arousal classification (HA/LA) accuracies by using the rhythm sequences from different channels and time segments. The deeper the red,
the higher the accuracy. Here, the three chosen segments presented are at the start, middle, and end parts: (a) 0-5 s; (b) 25-30 s; (c) 55-60 s. (subject S13, DEAP)

TABLE III
COMPARATIVE STUDY OF EEG-BASED EMOTION RECOGNITION WORKS
Number of Applied time length . Classification accuracy (%
channels used p[:)f EEG datag Main methodology Arousal Valeyn(ce :
Chao et al. [10] 32 60 s Capsule network 68.28 66.73
Yoon et al. [11] 32 60 s Bayesian weighted-log-posterior function 70.01 70.09
Atkinson et al. [12] 14 60 s Maximum relevance minimum redundancy method 73.06 73.14
Kumar et al. [13] 2 30s Bispectral analysis 64.84 61.17
Zhuang et al. [14] 8 5s Empirical mode decomposition 71.99 69.10
This work 1 5s BRS with similarity measure 75.66 72.86
As seen, the previous related works have not considered the REFERENCES

similarity measure of sequence classification. Meanwhile, the
single-channel solution for emotion recognition was ignored.
The fewer the channels, the fewer the electrodes. Therefore, the
representative channel found by the proposed idea is beneficial
for designing the portable emotion-aware device. Regarding the
applied time length, Zhuang et al. [14] utilized 5 s EEG data for
recognition. But, which 5 s is proper has not been investigated.
So, the appropriate time segment based on 5 s has been assessed
in this work. Finally, the proposed method produces accuracies
between 72%—75% by employing single-channel and 5 s data
only, which is impressive when considering fewer data sources.

V. CONCLUSION

In this work, the BRS with similarity measure has been
proposed for EEG-based emotion recognition, and to evaluate
its performance, 32 subjects from the DEAP dataset have been
studied. Results displayed that the classification accuracies of
72%—75% have been achieved by utilizing fewer data sources
compared with the previous works. Besides, the representative
channel that discloses vital scalp location, and the appropriate
time segment that indicates a short period for recognition, have
been investigated. Such properties not only disclose individual
characteristics for emotion recognition but also helps to design

the emotional-aware device by applying the single-channel data.

Hence, the proposed idea would open a novel way that uses the
similarity measure of sequence classification for EEG-based
emotion recognition.
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